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Abstract

We implement a dynamic asset pricing experiment in the spirit of Lucas (1978)
with storable assets and non-storable cash. In one treatment we impose diminishing
marginal returns to cash to incentivize consumption-smoothing across periods, while
in a second treatment there is no induced motive for trade. In the former case subjects
smooth consumption, and assets trade at a discount relative to the risk-neutral fun-
damental price. This under-pricing is a departure from the “bubbles” observed in the
experimental asset pricing experiments of Smith et al. (1988). In our second treatment
with no induced motive for trade, assets trade at a premium relative to expected value
and shareholdings are highly concentrated.
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1 Introduction

The consumption-based general equilibrium approach to asset pricing, as pioneered in the

work of Stiglitz (1970), Lucas (1978) and Breeden (1979), remains a workhorse model in

the literature on financial asset pricing in macroeconomics, or macrofinance. This approach

relates asset prices to individual risk and time preferences, dividends, aggregate disturbances

and other fundamental determinants of an asset’s value.1 While this class of theoretical

models has been extensively tested using archival field data, the evidence to date has not

been too supportive of the models’ predictions. For instance, estimated or calibrated versions

of the standard model generally under-predict the actual premium in the return to equities

relative to bonds, the so-called “equity premium puzzle” (Hansen and Singleton 1983, Mehra

and Prescott 1985, Kocherlakota 1996), and the actual volatility of asset prices is typically

much greater than the model’s predicted volatility based on changes in fundamentals alone

– the “excess volatility puzzle” (Shiller 1981, LeRoy and Porter 1981).2

A difficulty with testing this model using field data is that important parameters like

individual risk and time preferences, the dividend and income processes, and other determi-

nants of asset prices are unknown and have to be calibrated, approximated or estimated in

some fashion. An additional difficulty is that the available field data, for example data on

aggregate consumption, are measured with error (Wheatley 1988) or may not approximate

well the consumption of asset market participants (Mankiw and Zeldes 1991). A typical

approach is to specify some dividend process and calibrate preferences using micro-level

studies that may not be directly relevant to the domain or frequency of data examined by

the macrofinance researcher.

In this paper we follow a different path, by designing and analyzing data from a labora-

tory experiment that implements a simple version of an infinite horizon, consumption–based

general equilibrium model of asset pricing. In the lab we control the income and dividend

processes, and can induce the stationarity associated with an infinite horizon and time dis-

counting by introducing an indefinite horizon with a constant continuation probability. We

can precisely measure individual consumption and asset holdings and estimate each individ-

ual’s risk preferences separately from those implied by his market activity, providing us with

a clear picture of the environment in which agents are making asset pricing decisions. We

can also reliably induce heterogeneity in agent types to create a clear motivation for subjects

to engage in trade, whereas the theoretical literature frequently presumes a representative

1See, e.g., Cochrane (2005) and Lengwiler (2004) for surveys.
2Nevertheless, as Cochrane (2005, p. 455) observes, while the consumption-based model “works poorly in

practice. . . it is in some sense the only model we have. The central task of financial economics is to figure out
what are the real risks that drive asset prices and expected returns. Something like the consumption-based
model–investor’s first-order conditions for savings and portfolio choice–has to be the starting point.”
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agent and derives equilibrium asset prices at which the equilibrium volume of trade is zero.

The degree of control afforded by the lab presents an opportunity to diagnose the causes of

specific deviations from theory which are not identifiable using field data alone.

There already exists a literature testing asset price formation in dynamic laboratory

economies, but the design of these experiments departs in significant ways from consumption-

based macrofinance models.3 The early experimental literature (e.g., Forsythe, Palfrey and

Plott 1982, Plott and Sunder 1982, and Friedman, Harrison and Salmon 1984) instituted

markets comprised of several 2-3 period cycles. Each subject was assigned a type which

determined his endowment of experimental currency units (commonly called“francs”) and

asset shares in the first period of a cycle as well as his deterministic type-dependent div-

idend stream. Francs and assets carried across periods within a cycle. At the end of the

cycle’s final period, francs were converted to U.S. dollars at a linear rate and paid to sub-

jects, while assets became worthless. Each period began with trade in the asset and ended

with dividend payments. The main finding from this literature is that market prices effec-

tively aggregate private information about dividends and tend to converge toward rational

expectations values. While such results are in line with the efficient markets view of asset

pricing, the primary motivation for exchange owed to heterogeneous dividend values rather

than intertemporal consumption-smoothing as in the framework we study.

In later, highly influential work by Smith, Suchanek, and Williams (1988) (hereafter

SSW), a simple four-state i.i.d. dividend process was made common for all subjects. A

finite number of trading periods ensured that the expected value of the asset declined at

a constant rate over time. Unlike the aforementioned heterogeneous dividends literature

there was no induced motive for subjects to engage in any trade at all. Nevertheless SSW

observed substantial trade in the asset, with prices typically starting below the fundamental

value then rapidly soaring above it for a sustained duration of time before collapsing near the

end of the experiment. The “bubble-crash” pattern of the SSW design has been replicated

by many authors under a variety of treatment conditions, and has become the primary focus

of a large experimental literature on asset price formation (key papers include Porter and

Smith (1995), Lei et al. (2001), Dufwenberg, et al. (2005), Haruvy and Noussair (2006),

Haruvy et al. (2007), Hussam et al. (2008), Lei and Vesely (2009), Lugovskvy et al. (2011)

and Kirchler et al. (2012); for a review of the literature, see chapters 29 and 30 in Plott and

3There is also an experimental literature testing the static capital-asset pricing model (CAPM), see, e.g.,
Bossaerts and Plott (2002), Asparouhova, Bossaerts, and Plott (2003), Bossaerts, Plott and Zame (2007).
In contrast to consumption-based asset pricing, the CAPM is a portfolio-based approach and presumes that
agents have only asset-derived income. Further, the CAPM is not an explicitly dynamic model; laboratory
investigations of the CAPM involve repetition of a static, one-period economy. Cochrane (2005) does note
that intertemporal versions of the CAPM can be viewed as a special case of the consumption-based approach
to asset pricing where the production technology is linear and there is no labor/endowment income.
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Smith (2008)). Much attention has been devoted to various means by which the frequency

of bubbles can be reduced or even eliminated by researchers using some variant of the SSW

design (e.g., adding short sales or futures markets, computing expected values for subjects,

implementing a constant dividend, inserting “insiders” who have previously experienced

bubbles, using professional traders in place of students as subjects, framing the problem

differently, or using different price determination mechanisms).4 In most of these designs,

bubbles turn out to be difficult to inhibit.

Experiments in the SSW tradition share the following features. First, subjects are given

a large, one-time endowment (or loan) of francs. Thereafter, an individual’s franc balance

varies with his with asset purchases, sales, and dividends earned on assets held. These indi-

vidual franc balances carry over from one period to the next. Following the final period of the

experiment, franc balances are converted into money earnings using a linear exchange rate.

This design differs from the sequence–of–budget–constraints faced by agents in standard in-

tertemporal models; in essence it abstracts from the consumption-smoothing rationale for

trade in assets.

In contrast, our subjects receive an exogenous endowment of francs at the start of each

new period, which we interpret as income. Next, a franc-denominated dividend is paid

on each share of the asset a subject holds. Then an asset market is opened, with prices

denominated in francs, so that each transaction alters the subject’s franc balances. Critically,

after the asset market has closed, each subject’s end-of-period franc balance is converted to

dollars and stored in a private payment account that cannot be used for asset purchases or

consumption in any future period of the session, while her assets carry forward to the next

period. Thus in our experimental design all francs disappear from the system at the end of

each period; that is, they are “consumed,” so that assets are durable “trees” and francs are

perishable “fruit” in the language of Lucas (1978).5

We motivate trade in the asset in our baseline treatment by introducing heterogeneous

cyclic incomes and a concave franc-to-dollar exchange rate. Thus long-lived assets become a

vehicle for intertemporally smoothing consumption, a critical feature of most macrofinance

models which are built around the permanent income model of consumption but one that

4There is some experimental research on asset price determination by Hommes et al. (2005, 2008) that
uses a different intertemporal framework – one that exploits the no arbitrage relationship between risky and
risk-free assets. These experiments elicit subjects’ forecasts of future risky asset prices only and a computer
program then uses subjects’ forecasts to calculate subjects’ optimal current demand for the risky asset.
Equating aggregate demand with a fixed supply of the asset yields actual current prices, against which past
price forecasts are evaluated. Thus the main goal of subjects in the Hommes et al. experimental design is to
correctly forecast prices, while in our framework, the main goal of subjects is to trade (buy and sell) assets
so as to implement their intertemporal optimization (consumption-smoothing) plan.

5Notice that francs play a dual role as “consumption good” and “medium of exchange” within a period,
but assets are the only intertemporal store of value in our design.
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is absent from the experimental asset pricing literature. In our alternative treatment, the

franc-to-dollar exchange rate is made linear (as in SSW-type designs). Since the dividend

process is common to all subjects there is no induced reason for subjects to trade in the

asset at all in the second treatment, a design feature connecting our baseline macrofinance

economy with the laboratory asset bubble design of SSW.

Most consumption-based asset pricing models posit stationary, infinite planning hori-

zons, while most dynamic asset pricing experiments impose finite horizons with declining

asset values. We induce stationarity by implementing an indefinite horizon in which assets

become worthless at the end of each period with a known constant probability, a standard

approach in a wide range of economic experiments. If subjects are risk-neutral expected util-

ity maximizers, our indefinite horizon economy features the same steady state equilibrium

price and shareholdings as its infinite horizon constant time discounting analogue.

We also consider the consequences of departures from risk-neutral behavior. Our anal-

ysis of this issue is both theoretical and empirical. Specifically, we elicit a measure of risk

tolerance from subjects in most of our experimental sessions using the Holt-Laury (2002)

paired lottery choice instrument. To our knowledge no prior study has seriously investigated

risk preferences in combination with a multi-period asset pricing experiment.

While our experimental design is mainly intended to serve as a bridge between the exper-

imental asset pricing and macrofinance literatures, it also has some relevance for laboratory

research on intertemporal consumption-smoothing. Experimental investigations of intertem-

poral consumption smoothing (without tradeable assets) is the focus of several papers: Hey

and Dardanoni (1988), Noussair and Matheny (2000), Ballinger et al. (2003) and Carbone

and Hey (2004). A main finding from that literature is that subjects have difficulty learning

to intertemporally smooth their consumption in the manner prescribed by the solution to a

dynamic optimization problem; in particular, current consumption appears to be too closely

related to current income relative to the predictions of the optimal consumption function.

By contrast, in our experimental design where intertemporal consumption smoothing must

be implemented by buying and selling assets at market-determined prices, we find strong

evidence that subjects are able to consumption-smooth in a manner that is qualitatively (if

not quantitatively) similar to the dynamic, equilibrium solution. Our finding in support of

consumption smoothing is likely owing to the considerably simpler and non-stochastic in-

come process that we use in our design; subjects in our experiment need to learn only how to

repeatedly smooth consumption across two, perfectly known and alternating income states

(high and low). By contrast, in the experimental consumption smoothing literature, subjects

are confronted with smoothing a stochastic income process over a much longer horizon (e.g.,

lifecycle horizons of 25 or more periods as in Carbone and Hey (2004) and Ballinger et al.

(2003)). As a consequence, subjects have fewer opportunities to learn how to consumption
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smooth over this longer horizon than in our design, where subjects have multiple opportuni-

ties to smooth consumption over the indefinitely repeated two period income process. Our

different finding on consumption smoothing may also be related to the endogenous deter-

mination of asset prices (the savings vehicle for consumption smoothing) in our design and

so we also consider treatments where asset prices are exogenously given, but where subjects

remain incentivized to consumption smooth. In the latter case, we find evidence of even

stronger consumption smoothing.

The main findings of our experiment can be summarized as follows. First, the stochastic

horizon in the linear exchange rate treatment (where, as in SSW, there is no induced motive

to trade the asset) does not suffice to eliminate asset price “bubbles.” Indeed, we often

observe sustained prices above fundamentals in this environment; on average, prices are 32%

above the asset’s fundamental value in these sessions. However, the frequency, magnitude,

and duration of asset price bubbles are significantly reduced in our concave exchange rate

treatment; in fact, assets trade at an average discount relative to their risk-neutral funda-

mental price of 24% (a fact which suggests a modified design might help to identify an equity

premium, although the lack of a risk-free bond prevents us from doing so here). The higher

prices in the linear exchange rate economies are driven by a concentration of shareholdings

among the most risk-tolerant subjects in the market as identified by the Holt-Laury mea-

sure of risk attitudes. By contrast, in the concave exchange rate economies, most subjects

actively traded shares in each period so as to smooth their consumption in the manner

predicted by theory; consequently, shareholdings were much less concentrated. Thus market

thin-ness and high prices appear to be endogenous features of our more naturally speculative

treatment. We conclude that the frequency, magnitude, and duration of asset price bubbles

can be reduced by the presence of an incentive to intertemporally smooth consumption in

an otherwise identical economy, a key feature of most dynamic asset pricing models absent

from the SSW design.

In concurrent experimental research, Asparouhova et al. (2011) study a Lucas economy

in which there are short-lived francs and two long-lived assets: trees with stochastic divi-

dends and risk-free (console) bonds. Rather than induce consumption-smoothing through

a concave exchange rate, they pay subjects for cash holdings only during the terminal pe-

riod of the indefinite sequence, and thus rely on innate subject risk aversion to smooth

consumption; i.e., a risk-averse subject in their design should avoid ending a period with

too little cash in the event that period is terminal.6 Thus Asparouhova et al. use endoge-

nous consumption-smoothing to investigate important questions in finance like the equity

6To address the concern about potential wealth effects in our design, we note that in an indefinite horizon
experiment, Sherstyuk, Tarui, and Saijo (2013) find no evidence that subjects behave differently when paid
only for the terminal period rather than all periods.
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premium puzzle and the covariation of financial returns with aggregate wealth, while we

focus on demonstrating the comparative static impact of consumption-smoothing when such

incentives are exogenously weak or strong.

2 The Lucas asset pricing framework

In this section we first describe a heterogeneous agent version of Lucas’s (1978) infinite

horizon economy. We then present the indefinite horizon version we actually implement

in the laboratory, and demonstrate steady state equilibrium equivalence between the two

models under the assumption that subjects are risk-neutral expected utility maximizers. In

Appendix B we consider how the model is impacted by departures from risk neutrality.

2.1 The infinite horizon economy

Time t is discrete, and there are two agent types, i = 1, 2, who participate in an infinite

sequence of markets. There is a fixed supply of an infinitely durable asset (trees), shares

of which yield a dividend (fruit) in amount dt per period. Dividends are paid in units of

the single non-storable consumption good at the beginning of each period. Let si
t denote

the number of asset shares agent i owns at the beginning of period t, and let pt be the

price of an asset share in period t. In addition to dividend payments, agent i receives an

exogenous endowment of the consumption good yi
t at the beginning of every period. His

initial endowment of shares is denoted si
1.

Agent i faces the following objective function:

max
{ci

t}∞t=1

E1

∞∑
t=1

βt−1ui(ci
t),

subject to

ci
t ≤ yi

t + dts
i
t − pt

(
si

t+1 − si
t

)
for t ≥ 1 and a transversality condition ruling out non-fundamental solutions:

lim
T→∞

Etβ
Tui′(ci

t+T )pt+T = 0.

Here, ci
t denotes consumption of the single perishable good by agent i in period t, ui(·) is a

strictly monotonic, strictly concave, twice differentiable utility function, and β ∈ (0, 1) is the

(common) discount factor. The budget constraint is satisfied with equality by monotonicity.

We will impose no borrowing and no short sale constraints on subjects in the experiment,

but the economy will be parameterized in such a way that these restrictions only bind out-of-

equilibrium. Substituting the budget constraint for consumption in the objective function,
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and using asset shares as the control, we can restate the problem as:

max
{si

t+1}∞t=1

E1

∞∑
t=1

βt−1ui(yi
t + dts

i
t − pt(s

i
t+1 − si

t)).

The first order condition for each time t ≥ 1, suppressing agent superscripts for notational

convenience, is:

u′(ct)pt = Etβu′(ct+1)(pt+1 + dt+1).

Rearranging we have the asset pricing equation:

pt = Etμt+1(pt+1 + dt+1) (1)

where μt+1 = β u′(ct+1)
u′(ct)

, a term that is referred to variously as the stochastic discount factor,

the pricing kernel, or the intertemporal marginal rate of substitution. If we assume, for

example, that u(c) = cγ

1−γ
(the commonly studied CRRA utility), we have μt+1 = β

(
ct

ct+1

)γ

.

Notice from equation (1) that the price of the asset depends on 1): individual risk parameters

such as γ; 2): the rate of time preference, r, which is implied by the discount factor β =

1/(1 + r); 3): the income process; and 4): the dividend process, which is assumed to be

known and common for both player types.

We assume the aggregate endowment of francs and assets is constant across periods.7 We

further suppose the dividend is equal to a constant value dt = d̄ for all t, so that a constant

steady state equilibrium price exists.8 The latter assumption and the application of some

algebra to equation (1) yields:

p∗ =
d̄

Et
u′(ct)

βu′(ct+1)
− 1

. (2)

This equation applies to each agent, so if one agent expects consumption growth or decay they

all must do so in equilibrium. Since the aggregate endowment is constant, strict monotonicity

of preferences implies that there can be no growth or decay in consumption for all individuals

in equilibrium. Thus it must be the case that in a steady state competitive equilibrium each

agent perfectly smoothes his consumption, that is, ci
t = ci

t+1, so equation (2) simplifies to

the standard fundamental price equation:

p∗ =
β

1 − β
d̄. (3)

7The absence of income growth in our design rules out the possibility of “rational bubbles”.
8If the dividend is stochastic, it is straightforward to show that a steady state equilibrium price does

not exist. Instead, the price will depend (at a minimum) upon the current realization of the dividend. See
Mehra and Prescott (1985) for a derivation of equilibrium pricing in the representative agent version of this
model with a finite-state Markovian dividend process. We adopt the simpler, constant dividend framework
since our primary motivation was to induce an economic incentive for asset trade in a standard macrofinance
setting. We note Porter and Smith (1995) show that implementing constant dividends in the SSW design
does not substantially reduce the incidence or magnitude of asset price bubbles.
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2.2 The indefinite horizon economy

Obviously we cannot observe infinite periods in a laboratory study, and the economy is

too complex to elicit continuation strategies from subjects in order to compute discounted

payoff streams after a finite number of periods of real-time play. As we describe in greater

detail in the following section, in place of implementing an infinite horizon with constant

time discounting, we follow Camerer and Weigelt (1993) and study an indefinite horizon

with a constant continuation probability. This technique for implementing infinite horizon

environments in a laboratory setting is quite standard in game theory experiments (e.g., Dal

Bó and Fréchette 2011) and has a rich history, beginning with Roth and Murnighan (1978).

We will refer to units of the consumption good as “francs”. The utility function ui(ci)

in the experiment thus serves as a map from subject i’s end-of-period franc balance (con-

sumption) to U.S. dollars. While shares of the asset transfer across periods, once francs for a

given period are converted into dollars they disappear from the system, as the consumption

good is not storable. Dollars accumulate across periods in a non-transferable account and

are paid in cash at the end of the experiment. The indefinite horizon economy is terminated

with probability 1 − β at the end of each period, in which event shares of the asset become

worthless. Thus from the decision-maker’s perspective a share of the asset today is worth

more than a share tomorrow not because subjects are impatient as in the infinite horizon

model, but because the asset may cease to have value in the next period.

Let mt = u (ct) and Mt =
∑t

s=0 ms denote the sum of dollars a subject has earned

through period t given initial wealth m0 (which may be zero or include some combination

of the promised show-up fee, cumulative earnings during the experimental session, or even

an individual’s personal wealth outside of the laboratory). Superscripts indexing individual

subjects are suppressed for notational convenience. Let v (m) be a subject’s indigenous

(homegrown) utility from m dollars, and suppose this function is strictly concave, strictly

monotonic, and twice differentiable. Then the subject’s expected value from participating

in an indefinite horizon economy is

V =
∞∑

t=1

βt−1 (1 − β) v (Mt) . (4)

The sequence 〈st〉∞t=2 is the control used to adjust V . Maximizing (4) with respect to st+1

subject to the per-period budget constraint ptst+1 ≤ pt(st + d) + yt − ct yields the first-order

condition for t ≥ 1:

u′ (ct) pt

∞∑
s=t

βs−tEt{v′ (Ms)} =
∞∑
s=t

βs−t+1Et{v′ (Ms+1)u′ (ct+1) (d + pt+1)}. (5)
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Again focusing on a steady state price, the subject’s first-order condition reduces to:

p =
d

u′(ct)
u′(ct+1)

(
1 + v′(Mt)P∞

s=t βs−t+1v′(Ms+1)

)
− 1

. (6)

Notice the similarity of (6) to (2). This is not a coincidence; in the limit as indigenous risk

preferences, v(m), are linear, the indigenous marginal utility of wealth, v′(m) is constant, and

applying a little algebra to (6) produces (2). This justifies our earlier claim that the infinite

horizon economy and its indefinite horizon economy analogue share the same steady-state

equilibrium provided that subjects are risk-neutral. We consider departures from indigenous

risk neutrality in Appendix B.

3 Experimental design

We seek to determine the extent to which the price and share-holding predictions of the Lucas

asset pricing environment are supported within a laboratory implementation where we have

good control over the environment. The expected value of holding the asset is difficult to

compute relative to the SSW framework and no participant possesses sufficient information to

calculate the equilibrium price; we assess the extent to which these values are learned through

fundamentals (e.g, the dividend on the asset, the discount factor, the utility/payoff function,

and the income process) and market activity. We are further interested in the important

premise of consumption-based asset pricing models that agents use the asset, which in our

framework is the sole store of value, to intertemporally smooth their consumption. Finally,

we wish to challenge the robustness of our findings by considering the comparative static

implications of changes to the parameterization of the model economy.

There are many interesting re-parameterizations of the model but we choose to examine

just two. First, we consider whether and how changes in the dividend process affect the

price of the asset; after all, according to the theory, the present discounted sum of all future

dividends is the primary determinant of the asset’s price. Second, we examine whether the

strength of the consumption-smoothing objective matters by varying the curvature of the

agents’ induced utility function over consumption. The latter treatment variation enables

us to connect and differentiate our findings using the Lucas asset model with findings from

multi-period asset pricing experiments of the type conducted by SSW.

Thus our experiment involves a 2× 2 experimental design where the treatment variables

are 1) the induced utility function, which is either strictly concave as in the Lucas model

(1978, p. 1431) or linear as in SSW’s approach, and 2) the dividend earned per share held of

the asset, either high or low. We conducted twenty laboratory sessions (five per treatment)

of the indefinite horizon economy introduced in Section 2.2. In each session there were twelve
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subjects, six of each induced type, for a total of 240 subjects. The endowments of the two

subject types and their utility functions in all sessions are given in Table 1.

Table 1: Induced Utility and Endowment Parameters

Type No. Subjects si
1 {yi

t} = ui(c) =

1 6 1 110 if t is odd, δ1 + α1cφ1

44 if t is even

2 6 4 24 if t is odd, δ2 + α2cφ2

90 if t is even

In every session the franc endowment, yi
t, for each type i = 1, 2 followed the same

deterministic two-cycle. Subjects were informed that the aggregate endowment of income

and shares would remain constant throughout the session, but otherwise were only privy to

information regarding their own income process, shareholdings, and induced utility functions.

In each session dividends took a constant value of either d̄ = 2 or d̄ = 3, and either a linear

or concave utility function was induced for both subject types. Thus our four treatments

were C2 (concave utility, d̄ = 2), C3 (concave utility, d̄ = 3), L2 (linear utility, d̄ = 2), and

L3 (linear utility, d̄ = 3).

Utility parameters were chosen so that subjects would earn $1 per period in the risk

neutral steady state competitive equilibrium in C2 and L2. By contrast, C2 subjects earn

an average of $0.45 per period in autarky (no trade). In L2 expected earnings in autarky

equaled the competitive equilibrium earnings due to the linear exchange rate. A higher

dividend results in modestly higher benchmark payments; in L3 and C3 subjects earn an

average of $1.06 per period in the risk neutral steady state competitive equilibrium while the

autarkic payoff in C3 averaged $0.58 per period. The utility function used in each treatment

was presented to subjects both as a table and as a graph converting her end-of-period franc

balance to dollars.

More precisely in our baseline C2 and C3 we set φi < 1 and αiφi > 0.9 Given our two-

cycle income process, it is straightforward to show from (3) and the budget constraint that

steady state shareholdings must also follow a two-cycle between the initial share endowment,

si
odd = si

1, and

si
even = si

odd +
yi

odd − yi
even

d̄ + 2p∗
. (7)

Notice that in equilibrium subjects smooth consumption by buying asset shares during high

income periods and selling asset shares during low income periods. In C2 the equilibrium

9Specifically, φ1 = −1.195, α1 = −311.34, δ1 = 2.6074, φ2 = −1.3888, α2 = −327.81, and δ2 = 2.0627.
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price is p∗ = 10. Thus in equilibrium, according to equation (7), a type 1 subject holds 1

share in odd periods and 4 shares in even periods, and a type 2 subject holds 4 shares in odd

periods and 1 share in even periods. In C3 the equilibrium price is p∗ = 15. In equilibrium,

type 1 subjects cycle between 1 and 3 shares, while type 2 subjects cycle between 4 and 2

shares.

Our primary variation on the baseline concave treatments was to set φi = 1 for both

agent types so that there was no longer an incentive to smooth consumption.10 Our aim in

the linear treatments was to examine an environment that was closer to the SSW framework.

In SSW’s design, the dividend process was common to all subjects and dollar payoffs were

linear in francs, so risk neutral subjects had no induced motivation to engage in trade. We

hypothesized that in L2 and L3 we might observe assets trade at prices greater than the

fundamental price, in line with SSW’s bubble findings.

To derive the equilibrium price for linear utility (since the first-order conditions no longer

apply), suppose there exists a steady state equilibrium price p̂. Substituting each period’s

budget constraint we can re-write U =
∑∞

t=1 βt−1u(ct) as

U =

∞∑
t=1

βt−1yt + (d + p̂)s1 +

∞∑
t=2

βt−2 [βd − (1 − β)p̂] st. (8)

Notice that the first two right-hand side terms in (8) are constant, because they consist

entirely of exogenous, deterministic variables. If p̂ = p∗, the third right-hand term in (8)

is equal to zero regardless of the sequence of future shareholdings, so clearly this is an

equilibrium price; any feasible distribution of the aggregate endowment is a supporting

equilibrium allocation (since agents are indifferent to buying or selling the asset). If p̂ > p∗,

the third right-hand term is negative, so each agent would like to hold zero shares, but this

cannot be an equilibrium since excess demand would be negative. If p̂ < p∗, this same term

is positive, so each agent would like to buy as many shares as his no borrowing constraint

would allow in each period, thus resulting in positive excess demand. Thus p∗ is the unique

steady state equilibrium price in the case of linear utility.

In all sessions of our experiment we imposed the following trading constraints on subjects:

yi
t + dts

i
t − pt(s

i
t+1 − si

t) ≥ 0,

si
t ≥ 0,

where the first constraint is a no borrowing constraint and the second is a no short sales

constraint. These constraints do not impact the fundamental price in any treatment nor

steady-state equilibrium shareholdings in the concave treatments. They do restrict the set

10In these linear treatments, α1 = 0.0122, α2 = 0.0161, and δ1 = δ2 = 0.
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of equilibrium shareholdings in the linear treatment, which without these constraints must

merely sum to the aggregate share endowment. No borrowing or short sales are standard

restrictions in market experiments.

3.1 Induced discounting

As previously written, we sought to induce the stationarity associated with an infinite horizon

and constant time discounting model by implementing an indefinite horizon with a stochastic

number of trading periods. Each period lasted for three minutes during which time units

of the asset could be bought and sold in a centralized marketplace. At the end of each

period, one subject in rotation took a turn rolling a six-sided die in public view of the other

participants. If the die roll in period t was between 1 and 5 inclusive, the economy continued

with another period; each individual’s asset position was carried over to the start of period

t + 1. If the die roll was 6, the economy abruptly came to an end and all subjects’ assets

were declared worthless. Thus, the probability that assets continued to have value in future

trading periods was 5/6 (.833), analogous to a rate of time preference β = 5/6.

To give subjects the opportunity to learn from both “good” and “bad” realizations,

our experimental sessions were set up so that there would likely be several such sequences

of trading periods. We recruited subjects for a three-hour block of time. We informed

them they would participate in one or more “sequences,” each consisting of an indefinite

number of “trading periods” for at least one hour after the instructions had been read and

all questions answered. Following one hour of play (during which time one or more sequences

were typically completed), subjects were instructed that the sequence they were currently

playing would be the last one played, i.e., the next time a 6 was rolled the session would

come to a close. This design ensured that we would get a reasonable number of trading

periods, while at the same time limited the possibility that the session would not finish

within the 3-hour time-frame for which subjects had been recruited. Indeed, we never failed

to complete the final sequence within three hours.11 The expected mean (median) number of

trading periods per sequence in our design is 6 (4), respectively. The realized mean (median)

were 5.2 (4) in our sessions. On average there were 3.4 sequences per session.

11In the event that we did not complete the final sequence by the three hour limit, we instructed subjects
at the beginning of the experiment that we would bring all of them back to the laboratory as quickly as
possible to complete the final sequence. Subjects would be paid for all sequences that had ended in the
current session, but would be paid for the continuation sequence only when it had been completed. Their
financial stake in that final sequence would be derived from at least 25 periods of play, which makes such
an event very unlikely (about 1%) but quite a compelling motivator to get subjects back to the lab. As it
turned out, we did not have to bring back any group of subjects in any of the sessions we report on here, as
they all finished within the 3-hour time-frame for which subjects had been recruited.
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3.2 The trading mechanism

Another methodological issue is how to implement asset trading. General equilibrium mod-

els of asset pricing simply combine first-order conditions for portfolio choices with market

clearing conditions to obtain equilibrium prices, but do not specify the actual mechanism

by which prices are determined and assets are exchanged. We adopted the double auction

since it is well known to reliably converge to competitive equilibrium in a wide range of

experimental markets. We used the double auction module found in Fischbacher’s (2007)

z-Tree software.

Specifically, prior to the start of each three-minute trading period t, each subject i was

informed of his current asset position, si
t, and the number of francs he would have available

for trade, yi
t + si

td̄. After all subjects clicked a button indicating they understood their asset

and franc positions, the trading period was begun. Subjects could post buy or sell orders

for one unit of the asset at a time, though they were instructed that they could sell as

many assets as they had available, or buy as many assets as they wished so long as they

had sufficient francs. We instituted a standard bid-ask improvement rule: buy offers had to

improve on (exceed) existing buy offers and sell offers had to improve on (undercut) existing

sell offers to be posted in the (open) limit order book. Subjects could agree to buy or sell at a

currently posted price (i.e., submit a market order) by clicking on the bid/ask, immediately

after which the transaction was executed and the price publicly posted. After a trade the

order book was cleared, but subjects could (and did) immediately begin reposting buy and

sell orders. A history of all transaction prices in the trading period was always present on all

subjects’ screens, which also provided information on asset trade volume. In addition to this

information, each subject’s franc and asset balances were adjusted in real time in response

to any transactions.

3.3 Subjects, payments and timing

Subjects were primarily undergraduates from the University of Pittsburgh. No subject par-

ticipated in more than one session of this experiment. At the beginning of each session,

the 12 subjects were randomly assigned a role as either a type 1 or type 2 agent, so that

there were 6 subjects of each type. Subjects remained in the same role for the duration of

the session. They were seated at visually isolated computer workstations and were given

written instructions that were also read aloud prior to the start of play in an effort to make

the instructions public knowledge. As part of the instructions, each subject was required to

complete two quizzes to test comprehension of his induced utility function, the asset market

trading rules and other features of the environment; the session did not proceed until all

subjects had answered these quiz questions correctly. Instructions (including quizzes, pay-
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off tables, charts and endowment sheets) are reproduced in Appendix C.12 Subjects were

recruited for a three hour session, but a typical session ended after around two hours. Sub-

jects earned their payoffs from every period of every sequence played in the session. Mean

(median) payoffs were $22.65 ($22.41) per subject in the linear sessions and $18.75 ($19.48)

in the concave sessions, including a $5 show-up payment but excluding the payment for

the Holt-Laury individual choice experiment.13 Payments were higher in the linear sessions

because it was a zero-sum market, whereas social welfare was uniquely optimized in the

steady-state equilibrium in the concave sessions.

At the end of each period t, subject i’s franc balance was declared her consumption level,

ci
t, for that period; the dollar amount of this consumption holding, ui(ci

t), accrued to her

cumulative cash earnings from all prior trading periods, which were paid at the completion

of the session. The timing of events in our experimental design is summarized below:

�
t dividends paid;

francs=si
td̄ + yi

t,

assets=si
t.

3-minute trading period

using a double auction

to trade assets and francs.

consumption takes place:

ci
t = si

t d̄ + yi
t

+
PKi

t

ki
t=1

pt,ki
t

„
si
t,ki

t−1
− si

t,ki
t

«
.

die roll:

continue

to t + 1

w.p. 5/6,

else end.

t + 1

In this timeline, Ki
t is the number of transactions completed by i in period t, pt,ki

t
is the price

governing the kth transaction for i in t, and si
t,ki

t
is the number of shares held by i after

his kth transaction in period t. Thus si
t,0 = si

t and si
t,Ki

t
= si

t+1. Of course, this summa-

tion does not exist if i did not transact in period t; in this “autarkic” case, ci
t = si

td̄ + yi
t.

In equilibrium, sale and purchase prices are predicted to be identical over time and across

subjects, but under the double auction mechanism they can differ within and across periods

and subjects.

3.4 Subject risk preferences

Following completion of the last sequence of trading periods, beginning with Session 7 we

asked subjects to participate in a further brief experiment involving a single play of the

Holt-Laury (2002) paired-lottery choice instrument. The Holt-Laury paired-lottery choice

task is a commonly-used individual decision-making experiment for measuring individual risk

attitudes. This second experimental task was not announced in advance; subjects were in-

structed that, if they were willing, they could participate in a second experiment that would

last an additional 10-15 minutes for which they could earn an additional monetary payment

12Copies of the instructions and materials are available at http://www.socsci.uci.edu/∼duffy/assetpricing/.
13Subjects earned an average of $7.22 for the subsequent Holt-Laury experiment and this amount was

added to subjects’ total from the asset pricing experiment.
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from the set {$0.30, $4.80, $6.00, $11.55}.14 All subjects agreed to participate in this second

experiment. We had subjects use the same ID number in the Holt-Laury individual-decision

making experiment as they used in the 12-player asset-pricing/consumption smoothing ex-

periment enabling us to associate behavior in the latter with a measure of each individual’s

risk attitudes. Appendix C includes the instructions for the Holt-Laury paired-lottery choice

experiment. The Java program used to carry out the Holt-Laury test may be found at

http://www.socsci.uci.edu/∼duffy/assetpricing/.

4 Experimental findings

We conducted twenty experimental sessions. Each session involved twelve subjects with no

prior experience in our experimental design (240 subjects total). The treatments used in

these sessions are summarized in Table 2.

Table 2: Assignment of Sessions to Treatment

Session d̄ u(c) Holt-Laury test Session d̄ u(c) Holt-Laury test

1 2 concave No 11 3 concave Yes

2 3 concave No 12 3 linear Yes

3 2 linear No 13 3 linear Yes

4 3 linear No 14 3 concave Yes

5 2 linear No 15 2 concave Yes

6 2 concave No 16 2 linear Yes

7 3 linear Yes 17 3 concave Yes

8 3 concave Yes 18 3 linear Yes

9 2 concave Yes 19 2 concave Yes

10 2 linear Yes 20 2 linear Yes

We began administering the Holt-Laury paired-lottery individual decision-making exper-

iment following completion of the asset pricing experiment in sessions 7 through 20 after it

became apparent to us that indigenous risk preferences might be playing an important role

in our experimental findings. Thus in 14 of our 20 sessions, we have Holt-Laury measures of

individual subject’s tolerance for risk (168 of our 240 subjects, or 70%).

14These payoff amounts are 3 times those offered by Holt and Laury (2002) in their “low-payoff” treatment.
We chose to scale up the possible payoffs in this way so as to make the amounts comparable to what subjects
could earn over an average sequence of trading periods.
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On average about 23 shares were traded in each period of the sessions of this experiment.

Trading volume was a bit more than one share per period higher in the concave than linear

sessions, and about 1.5 shares per period higher in high dividend than low dividend sessions.

Mean (median) allocative efficiency – earnings as a fraction of the payoffs that were possible

under the competitive equilibrium prediction – averaged 0.73 (0.80) for the concave economies

with no difference by dividend, while the linear economies were fully efficient by construction.

We summarize our main results as a number of different findings, beginning with the concave

utility treatments.

4.1 Findings for induced concave utility

Finding 1 In the concave utility treatment (φi < 1), observed transaction prices at the end

of the session were generally less than or equal to p∗ = β
(1−β)

d̄.

Figure 1 displays median transaction prices by period for the concave sessions, d̄ = 2 is

on the left and d̄ = 3 is on the right. Solid dots represent the first period of a new indefinite

trading sequence. To facilitate comparisons across sessions, prices have been transformed

into percentage deviations from the predicted equilibrium price (e.g., a price of -40% in panel

(a), where d̄ = 2, reflects a price of 6, whereas a price of -40% in panel (b), where d̄ = 3,

reflects a price of 9).

Figure 1: Equilibrium-normalized Prices, Concave Sessions
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(a) Concave d̄ = 2
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(b) Concave d̄ = 3

Of the ten concave utility sessions depicted in panels (a) and (b), half end relatively close

to the asset’s fundamental price (their deviations from the fundamental price range between

-15% and 7%) while the other half finish well below it (deviations between -30% and -60%).

Several sessions did experience upward pressure on prices above the fundamental price (most
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notably sessions 8 and 9), but these “bubbles” were self-correcting by the end of the session,

and in general prices trended down in the concave sessions, especially in the second half

of the sessions (we’ll provide more formal evidence of this statement in the discussion of

Finding 3). We emphasize that these corrections were wholly endogenous rather than forced

by a known finite horizon as in SSW. We further emphasize that while prices in the concave

treatment lie at or below the prediction of p∗ = β
(1−β)

d̄, subjects were never informed of this

fundamental trading price (as is done in some of the SSW-type asset market experiments).

Indeed in our design, p∗ must be inferred from fundamentals alone, namely β and d̄ and a

presumption that agents are forward-looking, risk-neutral expected utility maximizers.

We next address a main implication of consumption-based asset pricing models, that

subjects use the asset to intertemporally smooth consumption. We report that:

Finding 2 In the concave utility treatments, there is strong evidence that subjects used the

asset to intertemporally smooth their consumption.

Figure 2 shows the per capita shareholdings of type 1 subjects by period (the per capita

shareholdings of type 2 subjects is five minus this number). Dashed vertical lines denote

the final period of a sequence,15 dashed horizontal lines mark equilibrium shareholdings

(the bottom line in odd periods of a sequence, the top line in even periods). Recall that

equilibrium shareholdings follow a perfect two-cycle, increasing in high income periods and

decreasing in low income periods. As Figure 2 indicates, a two-cycle pattern (in sign) is

precisely what occurred in each and every period on a per capita basis.16

Pooling across all concave sessions, type 1 subjects (on net) bought an average of 1.94

shares in odd periods (when they had high endowments of francs) and sold an average of

1.75 shares in even periods (when they had low endowments of francs). By contrast, in the

linear sessions, type 1 subjects bought an average of only 0.53 shares in odd periods and

sold an average of 0.25 shares in even periods. Thus, while there was a modest degree of

consumption-smoothing that took place in the linear sessions (on a per capita basis, type

1 subjects bought shares in odd periods in all ten sessions on average, and sold shares in

even periods in seven of ten sessions on average), the much greater change in mean share

position by type in the concave sessions (nearly four times as large) indicates that it was the

concavity of induced utility that mattered most for the consumption-smoothing observed in

Figure 2, and not the cyclic income process alone.

We can also confirm a strong degree of consumption-smoothing across individuals. Con-

sider the proportion of periods a subject smoothes consumption; that is, the proportion of

15Thus there are two allocations associated with each vertical line except the final one: the final share-
holdings of the sequence, and the re-initialized asset endowment of the following sequence (always one unit).

16In these graphs, the period numbers shown are aggregated over all sequences played. From a subject’s
perspective, each sequence started with period 1.
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Figure 2: Evidence of Individual Consumption-Smoothing

periods that a type 1 (2) subject buys (sells) shares if the period is odd, and sells (buys)

shares if the period is even. Figure 3 displays the cumulative distribution across subjects of

this proportion, pooled by whether the session had linear or concave induced utility func-

tions. Half of the subjects in the concave sessions smoothed consumption in more than
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Figure 3: Evidence of Individual Consumption-Smoothing

            Linear Sessions
            Concave Sessions

80% of all trading periods while less than 2% of subjects in the linear sessions smoothed

consumption so frequently. Well over 90% of the subjects in the concave sessions smoothed

consumption in at least half of the periods, whereas only 35% of the subjects in the linear

sessions smoothed consumption that frequently. We note that the comparative absence of

consumption smoothing in the linear sessions is not indicative of anti-consumption smooth-

ing behavior. Rather, it results from the fact that many subjects in the linear treatment did

not actively trade shares in many periods. It is clear from the figure that subjects in the

concave sessions were actively trading in most periods, and had a strong tendency to smooth

their consumption.

As noted in the introduction, the experimental evidence on whether subjects can learn to

smooth consumption in an optimal manner (without tradable assets) has not been encour-

aging; by contrast, in our design where subjects must engage in trade in the asset in order to

implement the optimal consumption plan and can observe transaction prices, consumption-

smoothing seems to come rather naturally to most subjects.
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4.2 Findings for induced linear utility

Finding 3 In the linear induced utility sessions (φi = 1) trade in the asset did occur, at

volumes similar to those observed in the concave sessions. Normalized transaction prices in

the linear utility sessions are significantly higher than prices in the concave utility sessions.

Figure 4 displays median transaction prices by period for the linear sessions, d̄ = 2 is on

the left and d̄ = 3 is on the right. As with Figure 1, solid dots represent the first period of a

new indefinite trading sequence and prices have been transformed into percentage deviations

from the predicted equilibrium price.

Figure 4: Equilibrium-normalized Prices, Linear Sessions
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(a) Linear d̄ = 2
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(b) Linear d̄ = 3

Table 3 displays the median transaction price over several frequencies at the individual

session level, and an average of these median prices at the treatment level. Notice that

for a given dividend value d̄, the average treatment price at each frequency is higher in

the linear case than the corresponding concave case. Further, the price difference between

linear and concave treatments involving the same d̄ value is generally diverging over time;

in moving from the median price over all periods, to the median second-half price, to the

median price in the final five periods, to the median price in the final period, the average

treatment price is monotonically decreasing in the concave treatments and monotonically

increasing in the linear treatments. To see evidence of these trends at the session level we

calculate the Mann-Kendall τ statistic, a non-parametric measure of monotonic trend, for

each session. The support of the τ statistic is the [−1, 1] interval, where τ = −1 indicates a

strictly monotonic negative trend, τ = 1 indicates a strictly monotonic positive trend, and

τ = 0 indicates no trend. The results of the test are presented in Table 3, where we observe

that five of the ten linear sessions have a positive trend at the 5% level of significance while

20



Table 3: Median Transaction Prices By Session and Treatment

Median First Pd Final Half Final 5 Pds Final Pd τ p-value

C2-Mean 9.6 10.9 9.4 9.0 8.3

S1 7 15 6 5 6 -0.67 0.0002

S6 9 10 9 9 10 0 1

S9 14 8.5 15 14 10 0.02 0.9592

S15 7 8 7 7 7 -0.39 0.0132

S19 11 13 10 10 8.5 -0.80 < 0.0001

L2-Mean 14.2 13.0 15.0 15.0 15.6

S3 13 13 13 13 13 -0.32 0.0609

S5 10 10 10 10 11 -0.06 0.8248

S10 18 18 20 20 20 0.63 0.0027

S16 18 13 20 20 22 0.81 < 0.0001

S20 12 11 12 12 12 0.27 0.1946

C3-Mean 10.8 8.4 10.8 10.6 10.4

S2 7 7 7 7 8 0.15 0.5174

S8 15 9 17 17 16 0.70 0.0010

S11 10 10 8 7 6 -0.78 < 0.0001

S14 13 11 13 13 13 -0.13 0.5698

S17 9 5 9 9 9 0.28 0.1551

L3-Mean 13.8 9.4 15.0 15.4 16.0

S4 10 6 11 12 13 0.72 0.0002

S7 13 10.5 13 13 13 0.33 0.1282

S12 10 11.5 10 10 10 -0.46 0.0228

S13 16 7 17 16 17 0.41 0.0356

S18 20 12 24 26 27 0.95 < 0.0001

only one has a negative trend, and four of ten concave sessions have a negative trend while

only one has a positive trend. Thus nearly half of the twenty sessions are diverging in prices

from each other by induced utility, while only 10% are changing in the opposite direction.

This evidence suggests that price differences between the concave and linear sessions

would likely have been even greater if our experimental sessions had involved more periods

of play. For this reason, we choose to look for treatment differences in median prices during

the final period of each session. Another justification for our focus on final period prices is

that in a relatively complicated market experiment such as this one there is the potential
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for significant learning over time; prices in the final period of each session reflect the actions

of subjects who are the most experienced with the trading institution, realizations of the

continuation probability, and the behavior of other subjects. Final period prices thus best

reflect learning and long-term trends in these markets.

Pooling the two dividend conditions for a given induced utility condition, we observe that

the median price in the final period of the linear sessions was 32% above the fundamental

price on average, while in the concave sessions this average median price was 24% below

the fundamental price. The associated Wilcoxon rank-sum test p-value is 0.006, strongly

rejecting the null hypothesis that equilibrium-normalized final period prices in the pooled

linear sessions were drawn from the same distribution as the concave sessions. We justify

pooling the dividend conditions based on the fact that the distributions of final period prices

in C2 vs. C3 and L2 vs. L3 are not statistically significant at the 5% level (p-values of 0.462

and 0.094, respectively).17

Thus the evidence is strong that the difference in induced preferences caused a strong

impact on prices by the end of the session; prices were considerably greater than the fun-

damental value in the linear sessions, and considerably below in the concave sessions. We

are presented with a bit of a puzzle with respect to where prices initialized. It is clear from

Figures 1 and 4 that relative to the fundamental price, each session in C3 initialized at a

first-period price below each session in C2, and each session in L3 initialized at a first-period

price below each session in L2, which alone might be attributed to a tighter budget constraint

for higher dividends. More puzzling, we also observe that on average, non-normalized prices

were also higher for d̄ = 2 than d̄ = 3 (pooling by dividend across induced utility conditions,

we reject the null hypothesis that the non-normalized median first-period prices in the d̄ = 2

sessions come from the same distribution as the prices in the d̄ = 3 sessions; the associated

Wilcoxon rank-sum p-value is 0.049). Thus dividend had an unexpectedly negative (though

relatively small) impact on prices in the first period, while the induced utility condition in

the first period had no impact (pooled p-value of 0.240). Whereas by the end of the session,

average non-normalized prices were higher for d̄ = 3 than d̄ = 2 for a given induced utility

condition (though not statistically significant), and it was the induced utility condition itself

which was the main driver of price differences.

Finding 4 In the linear utility treatment, the asset was “hoarded” by just a few subjects.

In the linear treatment subjects have no induced motivation to smooth consumption,

and thus no induced reason to trade at p∗ under the assumption of risk neutrality. However,

17In treatment-to-treatment comparisons, the difference in the distribution of final period prices is signifi-
cantly different between L2 and C2 (p-value is 0.012) but not between L3 and C3 (p-value is 0.139). Average
differences are quite large in both cases.
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Figure 5: Distribution (by Treatment) of Mean Shareholdings During the Final Two Periods

            Linear Sessions
            Concave Sessions

we nevertheless observe substantial trade in these linear sessions, with close to half of the

subjects selling nearly all of their shares, and a small number of subjects accumulating most

of the shares. Figure 5 displays the cumulative distribution of mean individual shareholdings

during the final two periods of the final sequence of each session, aggregated according to

whether the treatment induced a linear or concave utility function.18 We average across

the final two periods due to the consumption-smoothing identified in Finding 3; use of final

period data would bias upward the shareholdings of subjects in the concave sessions. We

consider the final two periods rather than averaging shares over the final sequence or over

the entire session because it can take several periods within a sequence for a subject to

achieve a targeted position due to the budget constraint. Forty-two percent of subjects in

the linear sessions held an average of 0.5 shares or less during the final two periods. By

contrast, just 8% of subjects in the concave sessions held so few shares during the final two

periods. At the other extreme, 17% of subjects in the linear sessions held an average of at

least 6 shares during the final two periods, while only 6% of subjects in the concave sessions

held so many shares. Thus subjects in the linear sessions were six times more likely to hold

‘few’ (< 1) shares and three times more likely to hold ‘many’ (≥ 6) shares as were subjects

18We use the final sequence with a duration of at least two periods.
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in the concave sessions, while subjects in the concave sessions were more than twice as likely

to hold an intermediate quantity (between 1 and 6) of shares (86% vs. 41%).

A useful summary statistic for the distribution of shares is the Gini coefficient, a measure

of inequality that is equal to zero when each subject holds an identical quantity of shares and

is equal to one when one subject owns all shares. Under autarky, where subjects hold their

initial endowments (type 1 subjects hold 1 share, type 2 subjects hold 4 shares), the Gini

coefficient is 0.3. In the consumption-smoothing equilibrium of the concave utility treatment,

the Gini coefficient when d̄ = 2 (treatment C2) is the same as under autarky: 0.3. When

d̄ = 3 (treatment C3), the Gini coefficient (over two periods) is slightly lower at 0.25. We find

that the mean Gini coefficient for mean shareholdings in the final two periods of all concave

sessions is 0.37. By contrast, the mean Gini coefficient for mean shareholdings in the final

two periods of all linear sessions is significantly larger, at 0.64; (Mann-Whitney test, p-value

0.0002). This difference largely reflects the hoarding of a large number of shares by just

a few subjects in the linear treatment, behavior that was absent in the concave treatment

sessions.19

We next turn to the impact of innate risk preferences on behavior in our experiment.

Finding 5 More risk tolerant subjects (as identified through the Holt-Laury paired lottery

choice task) typically held more shares of the asset in the linear, but not in the concave

treatment sessions.

After running the first six sessions of this experiment it became apparent to us that the

“indigenous” (home-grown) risk preferences of subjects might be a substantial influence on

asset prices and the distribution of shareholdings, particularly in the linear sessions. Thus

beginning with our seventh experimental session we asked subjects to participate in a second

experiment involving the Holt and Laury (2002) paired lottery choice instrument. This

second experiment occurred after the asset market experiment had concluded and was not

announced in advance to minimize any influence on decisions in the asset market experiment.

In this second experiment subjects faced a series of ten choices between two lotteries, A and

B, each paying either a low or high payoff. Lottery A had a low variance between payoffs

19Indeed, an interesting regularity is that exactly two of twelve (16.67%) subjects in each of the ten linear
sessions held an average of at least 6 shares of the asset during the final two trading periods (recall there
are only 30 shares of the asset in total in each session of our design). Thus the subjects identified in the
right tail of the distribution in Figure 5 were divided up evenly across the ten linear sessions. The actual
proportion of shares held by the two largest shareholders during the final two periods averaged 63% across
all linear sessions, compared with just 39% across all concave sessions. Applying the Mann-Whitney rank
sum test, the distribution of shares held by the largest two shareholders in the linear sessions is significantly
larger than the same distribution found in the concave sessions (p-value < 0.0001).
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while lottery B had a high variance.20 For choice n ∈ {1, 2, ..10}, the probability of getting

the high payoff in the chosen lottery was (0.1)n. For each subject one of the ten choices was

selected at random. Then the corresponding lottery was played (with computer-generated

probabilities) and the subject paid according to the outcome. As detailed in Holt and Laury,

a risk-neutral expected utility maximizer should choose the high-variance lottery B six times.

We refer to a subject’s HL score as the number of times a subject selected the high variance

lottery, B. HL scores lower than 6 indicate risk-aversion with regard to uncertain monetary

payoffs while scores greater than 6 indicate risk loving preferences. The mean HL score from

our sessions was 3.9. Roughly 17% of our subjects had an HL score of at least 6, and 30%

had a score of at least 5, indicating a fairly typical distribution of choices for lotteries of this

scale.

Pooling dividends and comparing linear versus concave induced utility, we conducted a

random effects regression of average subject shareholdings during the final two periods of each

session on the subject’s HL score for that session. We chose a random effects specification

with the experimental session as the random factor as there is session-level heterogeneity in

the distribution of risk preferences (e.g., a subject with a HL score of 6 might be the most

risk-tolerant subject in one session but only the third most risk-tolerant subject in another

session). In the linear case, the estimated coefficient on the HL score variable was 0.54 and

its associated p-value was 0.005 (the full regression results are presented in Table A-1 of

Appendix A). Thus the model predicts that for every two additional high-variance choices

in the lottery choice experiment, a subject will hold more than one additional share of the

asset by the end of the period. This is a huge impact, as there are only 2.5 shares per capita

in these economies. On the other hand, in the concave case the estimated coefficient on the

HL score is -0.159 with an associated p-value of 0.191 (full results are reported in Table A-2

of Appendix A).21 Thus we find that the HL score is a useful predictor of final shareholdings

only in the linear sessions: The more risk-tolerant a subject was relative to his session cohort,

the more shares he tended to own by the end of a linear-treatment session.

5 Conclusion

Our aim in this paper was to demonstrate how one could implement and test some of the

comparative static predictions of consumption-based asset pricing models in the controlled

20The high and low payments for lottery A were $6 and $4.80, respectively, and those for lottery B were
$11.55 and $0.30. These were the payments used in the baseline Holt and Laury treatment but scaled up by
a multiple of 3, so that the stakes in our paired-choice lottery were similar to expected equilibrium payments
for a sequence of our market experiment.

21The estimated coefficients and p-values in these regressions are nearly identical to those in the analogous
fixed effects regressions.
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conditions of the laboratory. As we noted in the introduction, the laboratory allows for

more careful control over the environment and data measurement than is possible using

field data, and we think that laboratory experiments should at least complement analyses

of asset pricing behavior using field data. An additional aim was to build a bridge between

the experimental asset pricing literature which has typically followed the SSW experimental

design and the equilibrium asset pricing models used by macroeconomic/business cycle and

finance researchers which are mainly consumption-based. To date there has been little

communication between researchers in these two literatures. Our work integrating methods

and models from both fields will enable both literatures to speak to a broader audience.

In our concave treatments, which implement a version of Lucas’s (1978) consumption-

based asset pricing model, we found that the theory generally performs well. Prices of

the asset lie at or below the equilibrium predicted level and increase with increases in the

dividend, that is, they respond to changes in economic fundamentals. Most significantly,

there is strong evidence that, consistent with the theory, subjects are using the asset to

intertemporally smooth their consumption by buying the asset in periods in which they have

high incomes and selling the asset in periods in which they have low income.

In our linear treatments which are closer to the SSW design in the sense that there is no

motive for subjects to use the asset to smooth consumption or to engage in any trade in the

asset whatsoever, we find that asset prices are considerably higher than in the comparable

concave treatment sessions. If we loosely define a bubble as a sustained deviation of asset

prices above the fundamental price, one-half of our linear treatment economies experienced

bubbles, and in three of those four sessions the bubble exhibited no signs of collapse. Indeed,

in two of these sessions the median price of the asset towards the end of the experiment was

more than double the fundamental price and was continuing to rise. By contrast, when

consumption-smoothing was induced in an otherwise identical economy as in our concave

treatments, prices bubbled in only one-fourth of sessions, and in these sessions the median

price of the asset collapsed to the fundamental price by the (random) end of the experimental

session. Thus, price bubbles were less frequent, of lower magnitude, and of shorter duration

when we induced a consumption-smoothing motive in an otherwise identical economy. In

fact, prices were nearly 25% below the fundamental price on average in the concave treatment

sessions; subjects could hold the asset at a premium (in expected value) relative to its sale

price.

Our results may offer some preliminary guidance as to which naturally occurring markets

are more prone to experience large asset price bubbles. We might reasonably expect that

markets with a high concentration of speculators, focused primarily on capital gains derived

from expected price movements, are the most likely to bubble, while markets with a large

number of participants who trade at least in part for lifecycle consumption-smoothing pur-
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poses (e.g. to save for retirement) are less likely to bubble. Of course, in our current design

we do not have subjects with both linear and concave induced utility functions so at this

juncture we merely offer the possibility that laboratory experiments could provide the basis

for such a characterization in the future.

Our experimental design can be extended in at least three distinct directions. First, the

design can be moved a step closer to the environments used in the macrofinance literature;

specifically, by adding a Markov process for dividends and/or a known, constant growth rate

in endowment income. The purpose of such treatments would be to explore the robustness

of our present findings in the deterministic setting to stochastic or growing environments.

A further step would be to induce consumption-smoothing through overlapping generations

rather than via a cyclic income process and a concave exchange rate.

In another direction, it would be useful to clarify the impact of features of our exper-

imental design relative to the much-studied experimental design of Smith, Suchanek, and

Williams (1988). For example, one could study a finite horizon, linear (induced) utility

design as in SSW, but where there exists a constant probability of firm bankruptcy as in

our present design. Would the interaction of a finite horizon but the possibility of firm

bankruptcy inhibit bubbles relative to the SSW design, or is an induced economic incentive

to trade assets necessary to prevent a small group of speculators from effectively setting asset

prices across a broad range of economies?

Finally, it would be useful to design an experiment to rigorously test for within-session

risk preferences and wealth effects. In our present design we observe little evidence that risk-

averse subjects (those with low Holt-Laury scores) attempt to increase their shareholdings

over time in the linear induced utility treatment in sessions where prices are relatively low,

a contradiction of time-consistent rational risk-aversion. This result is perhaps not surpris-

ing; if subjects exhibit a different degree of risk aversion in small stakes laboratory gambles

than they apply to ‘large’ economic decisions (i.e., Rabin’s (2000) critique), then perhaps

it should be expected that they exhibit myopic risk aversion over a sequence of small stake

gambles rather than maximize expected utility globally over a sequence. To our knowledge

this hypothesis has not been directly tested. In fact, most laboratory studies of risk prefer-

ences quite consciously and explicitly eliminate the possibility of laboratory wealth effects

on subject behavior.

We leave these extensions and additional experimental designs to future research.
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Appendix A: Regression Results

Table A-1: R.E. Regression of Final Shareholdings on HL Scores, Linear Sessions

sij = β0 + β1hij + uj + εij

sij = average shares of subject i during the final 2 periods of linear session j

hij = HL score of subject i in linear session j

Random-effects GLS regression Number of obs = 60

Group variable (i): session Number of groups = 5

R2: within = 0.0000 Obs per group: min = 12

between = 0.0000 avg = 12.0

overall = 0.0723 max = 12

Random effect uj ∼Guassian Wald χ2(1) = 4.52

corr(uj,hj) = 0 (assumed) Prob > χ2 = 0.0335

sij Coef. Std. Err. z P > |z| [95% Confidence Interval]

β1 0.4579467 0.2153831 2.13 0.033 [0.0358035, 0.8800899]

β0 0.5613589 1.001782 0.56 0.575 [-1.402099, 2.524816]

sigma u 0

sigma e 3.3157167

rho 0 (fraction of variance due to uj)
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Table A-2: R.E. Regression of Final Shareholdings on HL Scores, Concave Sessions

sij = β0 + β1hij + uj + εij

sij = average shares of subject i during the final 2 periods of concave session j

hij = HL score of subject i in concave session j

Random-effects GLS regression Number of obs = 60

Group variable (i): session Number of groups = 5

R2: within = 0.0000 Obs per group: min = 12

between = 0.0000 avg = 12.0

overall = 0.0117 max = 12

Random effect uj ∼Guassian Wald χ2(1) = 0.69

corr(uj,hj) = 0 (assumed) Prob > χ2 = 0.4074

sij Coef. Std. Err. z P > |z| [95% Confidence Interval]

β1 -0.0969082 0.1169705 -0.83 0.407 [0.3261662, 0.1323499]

β0 2.847254 0.4656838 6.11 0.000 [1.934531, 3.759978]

sigma u 0

sigma e 1.6286249

rho 0 (fraction of variance due to uj)

Table A-3: Linear Regression of Median First Period Prices on Mean HL Scores

pj = β0 + β1hi + β2

(
h2

j − hj

)2
+ εj

pj = median period 1 price in session j

hj = mean HL score (i.e., number of high variance choices) in session j

h2
j = mean HL score for type 2 subjects in session j

Source SS df Model Number of obs = 10

Model 86.002833 2 43.0014165 F (2,7) = 119.35

Residual 2.52216695 7 0.360309565 Prob > F = 0.0000

Total 88.525 9 9.83611111 R2 = 0.9715

Adjusted R2 = 0.9634

Root MSE = 0.60026

pj Coef. Std. Err. t P > |t| [95% Confidence Interval]

β1 3.60597 0.3221715 11.19 0.000 [2.844155, 4.367784]

β2 11.18167 1.446256 7.73 0.000 [7.761817, 14.60152]

β0 -4.786654 1.244665 -3.85 0.006 [-7.72982, -1.843489]
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Table A-4: Quadratic Regression, Net E.V. Positions on HL Scores, Concave Sessions

νij = β0 + β1hij + β2h
2
ij + uj + εij

νij = mean net expected value trading position of subject i in concave session j

hij = HL score of subject i in concave session j

Source SS df Model Number of obs = 60

Model .831903717 2 .415951859 F (2,57) = 2.06

Residual 11.4957808 57 .201680364 Prob > F = 0.1365

Total 12.3276845 59 .208943805 R2 = 0.0675

Adjusted R2 = 0.0348

Root MSE = 0.44909

νij Coef. Std. Err. t P > |t| [95% Confidence Interval]

β1 .219287 .1081382 2.03 0.047 [.002744, .4358299]

β2 -.0227729 .0115985 -1.96 0.054 [-.0459984, .0004527]

β0 .1047916 .2276237 0.46 0.647 [-.351017, .5606003]

Table A-5: Quadratic Regression, Net E.V. Positions on HL Scores, Linear Sessions

νij = β0 + β1hij + β2h
2
ij + uj + εij

νij = mean net expected value trading position of subject i in concave session j

hij = HL score of subject i in linear session j

Source SS df Model Number of obs = 60

Model .000889999 2 .000444999 F (2,57) = 0.79

Residual .032005762 57 .000561505 Prob > F = 0.4576

Total .032895761 59 .000557555 R2 = 0.0271

Adjusted R2 = -0.0071

Root MSE = .0237

νij Coef. Std. Err. t P > |t| [95% Confidence Interval]

β1 .006825 ..0054248 1.26 0.213 [-.0040379, .0176878]

β2 -.000589 .0004937 -1.19 0.238 [-.0015775, .0003996]

β0 -.015603 ..0136212 -1.15 0.257 [-.0428791, .0116731]
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Appendix B. Indigenous (homegrown) risk preferences

(for online publication)

Their HL scores indicate that a majority of subjects in our experiment are risk averse, in

contrast with our theoretical assumption of risk-neutral expected utility maximizers. Here we

address the extent to which the model’s predictions are altered by the presence of individuals

with indigenous risk aversion.

We must first attend to initial wealth m0 as introduced in Section 2.2, since this term

enters decision-making through equation (6). One view of m0 is that it corresponds to

the (unobserved) wealth of individual subjects at the start of the experiment. However, as

Rabin (2000) points out, it is difficult to rationalize risk aversion over the small stakes of our

experiment given the likely wealth levels that subjects have at the start of the experiment. A

second view of m0 is that it corresponds to the wealth accumulated in the experiment up to

the point of the current decision (e.g., the promised show-up payment of $5 plus earnings in

all prior periods of the experiment). A third (more myopic) view is that m0 is re-initialized

to $0 at the start of every new indefinite sequence of periods. Finally, the most extreme

myopic assumption is that m0 is reset to $0 at the start of each period.

From Rabin’s critique we can rule out that most indigenously risk averse agents set m0

equal to their actual wealth. Therefore we will consider the last three assumptions in our

analysis of the effect of initial wealth on optimization by indigenously risk-averse agents.

For simplicity we assume that prices are expected with certainty to remain constant at some

level, p, which greatly simplifies our analysis and allows us to use the Euler equation (6) as

our starting point.

Behavior in the Linear Treatments

We begin with the case where induced utility is linear (that is, treatments L2 and L3), so

that u(c) = αc. Recall that Mt is cumulative dollar earnings through period t, and v(m) is

the subject’s indigenous utility from m dollars, which we assume to be strictly concave (i.e.,

risk-averse) throughout this section. Then, by equation (6), prices can be constant only if

v′ (Mt+1) = kv′ (Mt) for all t, where k ∈ (0, 1) is a constant rate of decay of marginal utility.

Thus (6) reduces to

p =
kβ

1 − kβ
d̄. (9)

Suppose subjects’ indigenous utility is characterized by the CRRA function v(m) = 1
1−γ

m1−γ,
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where γ > 0. Then k =
(

Mt

Mt+1

)γ

. Substituting this expression into (9) and applying some

algebra, we obtain the condition Mt+1 = gMt, where g =

[
(d̄+p)β

p

] 1
γ

is the optimal growth

rate of wealth for period t > 1.

If the prevailing price p ≥ p∗ then g ≤ 1, so the subject would prefer for consumption to be

zero after the first period. Since short sales are not allowed, a risk-averse subject adopts the

corner solution in which he sells all of his shares of the asset in the first period (or as soon as

possible) and simply consumes his endowment income in subsequent periods. The behavior

of many subjects was close to this prediction in the L2 treatment (in particular, about half

of the subjects held fewer than one share of the asset per period), where prices were often

above p∗.

If the prevailing price p < p∗ we have g > 1, so a risk-averse subject prefers that his wealth

grows over time at a constant rate. This growth rate is decreasing in the risk-aversion of the

subject and price. Thus a more risk-averse subject facing higher prices prefers more of his

earnings earlier in the sequence and accumulates wealth at a slower rate. For all γ > 0 (that

is, for all risk-averse subjects) wealth eventually explodes as the curvature of the subject’s

indigenous utility function becomes approximately linear at “high” levels of consumption;

that is, the subject behaves approximately like a risk-neutral agent once he’s accumulated

sufficient wealth (and would prefer to borrow assets at the current price if he were allowed to

borrow). Note that it is not possible for all subjects to behave as expected utility maximizers

at a constant price below p∗ because aggregate income in the experiment is constant in each

period. Eventually demand would outpace supply, causing prices to rise up toward p∗.

An important question is how quickly should we expect excess demand (and thus prices)

to rise in our experiment due to this wealth effect? Let’s focus first on the L3 treatment,

where p = 10 was a commonly observed and fairly stable price in 2 of our 4 sessions (p∗ = 15

in the L3 treatment so we have p < p∗). Consider the behavior of a subject with γ = 0.5

(the mean degree of risk-aversion implied by our distribution of HL scores). Suppose this

subject believes that prices will continue to be 10 and further considers initial wealth m0 to

be his show-up fee, $5. The upper-left panel of Figure 6 displays the optimal shareholdings

for type 1 and type 2 subjects under these assumptions, along with their excess demand.

Desired shareholdings at the end of the first period are more than 12 for type 1 and more

than 7 for type 2; thus excess demand for a pair of risk-averse subjects (γ = .5) will be four

times their endowment of shares at the end of the first period alone! Thus the notion that

subjects maximize utility given initial wealth earned in the experiment (just $5) appears to

be incompatible with the below-equilibrium prices observed in the two L3 sessions, at least

under the assumption of constant prices.
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Figure 6: Optimal Behavior Under Constant Price p = 10

Suppose next that m0 = $0 at the beginning of each new sequence (so that subjects attempt

to maximize utility within each sequence independently). The upper-right panel of Figure 6

shows that our pair of opposite-type subjects with an average degree of risk aversion (γ = .5)

will now have excess demand for shares that is nearly four times their share endowment by

the fifth period. Even a pair of highly risk-averse subjects (γ → 1, which is log utility) with

m0 = $0 will have positive excess demand for shares by the eighth period (see the lower-left

panel of Figure 6). Thus regardless of the value of m0 and the degree of risk aversion, we

should not have observed stable prices as far below p∗ as we observed in some sessions of

L3. Thus it seems unlikely that subjects in the L3 sessions were attempting to dynamically

optimize expected utility when prices were consistently below p∗.

Finally suppose that risk-averse subjects ignore wealth effects entirely, even within a se-

quence, i.e., m0 resets to $0 at the start of every period. In that case the Euler equation

(6) is no longer binding. Under that assumption, one can view the decision to hold an asset

indefinitely as a compound lottery having an expected value of p∗ francs. For a subject with

γ = 0.5, the certainty equivalent of this compound lottery when d̄ = 2 is 6.9 francs, and

is 10.4 francs when d̄ = 3.22 With this view of decision-making, it is easier to rationalize

sales of assets at prices greater than or equal to these certainty equivalent values throughout

22This is the discounted expected utility of the dividend stream under the assumption of CRRA utility
with γ = 0.5

37



a session. Recall that prices in the L2 sessions averaged 10 or greater while prices in the

L3 sessions averaged 10.3 or greater (see Table 3). Thus, a subject with a mean degree of

indigenous risk aversion who ignores all wealth effects will prefer not to buy assets at the

transaction prices that prevailed on average in all sessions of the linear treatment. Noting

that nearly half of all subjects quickly sold all or nearly all of their asset shares in the lin-

ear sessions, it appears that the assumption of extreme myopia with regard to wealth can

rationalize more of the data than can dynamic optimization of expected utility.

Behavior in the Concave Treatment

For the concave treatment, equation (6) is difficult to solve numerically for risk-averse

agents.23 Thus we will focus here on the out-of-equilibrium behavior of indigenous risk-

neutral subjects in the concave induced utility treatment and make some inferences based on

that analysis for the behavior of indigenously risk-averse subjects. In this case where agents

are indigenously risk neutral, the marginal utility of indigenous wealth becomes constant in

equation (6), so that the induced marginal rate of substitution over time becomes the only

variable. Initial wealth levels don’t matter in this case.

In the lower-right panel of Figure 6 we observe optimal shareholdings for a pair of opposite

type subjects who are indigenously risk-neutral (γ = 0) and who face a constant price of

10 < p∗ = 15 (as in our C3 treatment). Desired shareholdings increase over time since

p < p∗, but the optimal rate of increase is much slower than it is for moderately risk-averse

subjects (γ = 0.5) at the same price of 10 (and same p∗) when induced preferences are linear

(compare with the top two panels of Figure 6 and not the change in the scale on the vertical

axis). Thus while the risk-neutral steady state equilibrium prices of analogous linear and

concave economies are the same, optimal behavior out of equilibrium is distinctly different

in the two cases. From Figure6 we observe that in the L3 treatment, rationally risk-averse

subjects facing a below-equilibrium price may spend early periods at a constrained outcome

where they wish only to buy or sell assets. The transition from the constrained outcome

where the subject is a seller to one where he is a buyer happens very quickly, as can be

readily inferred from the first three panels of Figure 6 when coupled with the fact that the

aggregate endowment was fixed at only 5 shares per pair of subjects. This knife-edge feature

of induced linear preferences also applies to the behavioral strategy introduced above, where

wealth effects within the sequence are ignored entirely.

23This is due to the interaction of the infinite sum of discounted, indigenous marginal utilities of wealth
and the induced marginal rate of substitution. To our knowledge this is a novel dynamic programming
problem.
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On the other hand, for concave induced preferences, consumption-smoothing remains a

strong feature of optimal behavior even out of equilibrium. This is apparent for the risk-

neutral agents represented in the lower-right panel of Figure 6, and we conjecture that this

will also hold true for indigenously risk-averse agents, who presumably should seek to in-

crease their shareholdings at an even slower rate. Intuitively, the excess demand of a pair

of indigenously risk-averse agents should be bounded from above by the excess demand of a

pair of indigenously risk-neutral agents as depicted in the lower right panel of Figure 6.
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Appendix C: Instructions Used in the Experiment (for

online publication)

The instructions distributed to subjects in the C2 treatment are reproduced on the following

pages. Subjects in the C3 treatment received identical instructions, except that dividends

were changed from 2 to 3 throughout. Subjects in the L2 and L3 treatments received

identical instructions to their counterparts in C2 and C3, respectively, except for the fourth

paragraph. The modified fourth paragraph in the instructions for the L2 and L3 treatments

is reproduced at the end of the C2 treatment instructions.

Following these instructions we present a reproduction of the endowment sheets, payoff

tables, and payoff charts for all subjects. After these supplements we present the in-

structions distributed to all subjects for the Holt-Laury paired-choice lottery. A com-

plete set of all instructions used in all treatments of this experiment can be found at

http://www.socsci.uci.edu/∼duffy/assetpricing/.
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Experimental Instructions

I. Overview

This is an experiment in the economics of decision making. If you follow the

instructions carefully and make good decisions you may earn a considerable

amount of money that will be paid to you in cash at the end of this session.

Please do not talk with others for the duration of the experiment. If you have

a question please raise your hand and one of the experimenters will answer

your question in private.

Today you will participate in one or more “sequences”, each consisting of

a number of “trading periods”. There are two objects of interest in this

experiment, francs and assets. At the start of each period you will receive

the number of francs as indicated on the page entitled “Endowment Sheet”.

In addition, you will earn 2 francs for each unit of the asset you hold at

the start of a period (please look at the endowment sheet now). During the

period you may buy assets from or sell assets to other participants using

francs. Details about how this is done are discussed below in section IV.

At the end of each period, your end-of-period franc balance will be converted

into dollar earnings. These dollar earnings will accumulate across periods and

sequences, and will be paid to you in cash at the end of the experiment. The

number of assets you own carry over from one period to the next, if there is a

next period (more on this below), whereas your end-of-period franc balance

does not -you start each new period with the endowment of francs indicated

on your Endowment Sheet. Therefore, there are two reasons to hold assets:

(1) they provide additional francs at the beginning of each period and (2)

assets may be sold for francs in some future period.

Please open your folder and look at the “Payoff Table” showing how your end-

of-period franc balance converts into dollars. The “Payoff Chart” provides a
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graphical illustration of the payoff table. There are several things to notice.

First, very low numbers of francs yield negative dollar payoffs. The lowest

number in the payoff table is 11 francs. You are not permitted to hold less

than 11 francs at any time during the experiment. Second, the more francs

you earn in a period, the higher will be your dollar earnings for that period.

Finally, the dollar payoff from each additional franc that you earn in a period

is diminishing; for example, the payoff difference between 56 and 57 francs is

larger than the difference between 93 and 94 francs.

NOTE: The total number of francs and assets held by all participants in this

market does not change over the course of a sequence. Further, the number

of francs provided by each asset, 2, is the same for all participants.
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II. Preliminary Quiz

Using your endowment sheet and payoff table, we now pause and ask you

to answer the following questions. We will come around to verify that your

answers are correct.

1. Suppose it is the first period of a sequence (an odd-numbered period).

What is the number of assets you own?

2. What is the total number of francs you have available at the start of the

first period, including both your endowment of francs and the 2 francs you get

for each unit of the asset you own at the start of the period?

3. Suppose that at the end of the first period you have not bought or sold

any assets, so your franc total is the same as at the start of the period (your

answer to question 2). What is your payoff in dollars for this first period?

4. Suppose that the sequence continues with period 2 (an even-numbered

period), and that you did not buy or sell any assets in the first period, so you

own the same number of assets. What is the total number of francs you have

available at the start of period 2, including both your endowment of francs

and the 2 francs you get for each unit of the asset you own at the start of a

period?

5. Suppose again that at the end of period 2 you have not bought or sold

any assets, so your franc total is the same as at the start of the period (your

answer to question 4). What is your payoff in dollars for this second period?

What would be your dollar earnings in the sequence to this

point?

III: Sequences of Trading Periods

As mentioned, today’s session consists of one or more “sequences,” with each
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sequence consisting of a number of “periods.” Each period lasts 3 minutes.

At the end of each period your end-of-period franc balance, dollar payoff and

the number of assets will be shown to you on your computer screen. One

of the participants will then roll a die (with sides numbered from 1-6). If

the number rolled is 1-5, the sequence will continue with a new, 3-minute

period. If a 6 is rolled, the sequence will end and your cash balance for that

sequence will be final. Any assets you own will become worthless. Thus, at

the start of each period, there is a 1 in 6 (or about 16.7 percent) chance that

the period will be the last one played in the sequence and a 5 in 6 (or about

83.3 percent) chance that the sequence will continue with another period.

If less than 60 minutes have passed since the start of the first sequence, a new

sequence will begin. You will start the new sequence and every new sequence

just as you started the first sequence, with the number of francs and assets

as indicated on your endowment sheet. The quantity of francs you receive in

each period will alternate as before, between odd and even periods, and the

total number of assets available for sale (across all participants) will remain

constant in every period of the sequence. If more than 60 minutes has elapsed

since the beginning of the first sequence then the current sequence will be the

last sequence played; that is, the next time a 6 is rolled the sequence will end

and the experiment will be over. The total dollar amount you earned from

all sequences will be calculated and you will be paid this amount together

with your $5 show-up fee in cash and in private before exiting the room.

If, by chance, the final sequence has not ended by the three-hour period

for which you have been recruited, we will schedule a continuation of this

sequence for another time in which everyone here can attend. You would

be immediately paid your earnings from all sequences that ended in today’s

session. You would start the continuation sequence with the same number

of assets you ended with in today’s session, and your franc balance would

continue to alternate between odd and even periods as before. You would be
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paid your earnings for this final sequence after it has been completed.

IV. Asset Trading Rules

During each three minute (180 second) trading period, you may choose to buy

or sell assets. Trade happens on the trading window screen, show below. The

current period is shown in the upper left and the time remaining for trading

in this period (in seconds) is indicated in the upper right. The number of

francs and assets you have available is shown on the left. Assets are bought

and sold one unit at a time, but you can buy or sell more than one unit in a

trading period.

To submit a bid or buying price for an asset, type in the amount of francs

you are willing to pay for a unit of the asset in the “Buying price” box on

the right. Then click on the “Post Buying Price” button on the bottom

right. The computer will tell you if you don’t have enough francs to place a

buy order; recall that you cannot go below a minimum of 11 francs in your

account. Once your buy price has been submitted, it is checked against any

other existing buy prices. If your buy price is higher than any existing buy

price, it will appear under the “Buying Price” column in the middle right of

the screen; otherwise, you will be asked to revise your bid upward - you must

improve on existing bids. Once your buy price appears on the trading screen,

any player who has a unit of the asset available can choose to sell it to you at

that price by using the mouse to highlight your buy price and clicking on the

button “Sell at Highest Price” (bottom center-right of the screen). If that

happens, the number of francs you bid is transferred to the seller and one

unit of the asset is transferred from the seller to you. Another possibility is

that another person will choose to improve on the buy price you submitted

by entering a higher buy price. In that case, you must increase your buy

price even higher to have a chance of buying the asset.
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Trading Window Screen

To submit a selling or “ask” price for an asset, type in the amount of francs

you would be willing to accept to sell an asset in the “Selling offer” box on

the left and then click the “Post Selling Price” button on the bottom left.

Note: you cannot sell an asset if you do not presently have an asset available

to sell in your account. Once your sell price has been submitted, it is checked

against any other existing sell prices. If your sell price is lower than any

existing sell prices, it will appear on the trading screen under the ”Selling

Price” column in the middle left of the screen; otherwise, you will be asked to

revise your sell price downward - you must improve on existing offers to sell.

Any participant who has enough francs available can choose to buy the asset

from you at your price by using the mouse to highlight your sell price and

clicking on the button labeled ”Buy at Lowest Price” (bottom center-left of
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the screen). If that happens, one unit of the asset is transferred from you to

the buyer, and in exchange the number of francs you agreed to sell the asset

for is transferred from the buyer to you. Another possibility is that another

person will choose to improve on the sell price you submitted, by entering an

even lower sell price. In that case, you will have to lower your sell price even

further to have a chance of selling the asset.

Whenever an agreement to buy/sell between any two players takes place, the

transaction price is shown in the middle column of the trading screen labeled

“Transaction Price.” If someone has chosen to buy at the lowest price, all

selling prices are cleared from the trading screen. If someone has chosen to

sell at the highest price, all buying prices are cleared from the trading screen.

As long as trading remains open, you can post new buy and sell prices and

agree to make transactions following the same rules given above. The entire

history of transaction prices will remain in the middle column for the duration

of each trading period.

At the end of each period, you will be told your end-of-period franc balance

and dollar payoff for the period, along with your cumulative total dollar payoff

over all periods played in the sequence thus far. At then end of each sequence

(whenever a “6” is rolled), we will ask you to write down, on your earnings

sheet, the sequence number, the number of trading periods in that sequence

and your total dollar payoff for that sequence.

V. Final Quiz

Before continuing on to the experiment, we ask that you consider the following

scenarios and provide answers to the questions asked in the spaces provided.

The numbers used in this quiz are merely illustrative; the actual numbers in

the experiment may be quite different. You will need to consult your payoff

table to answer some of these questions.
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Question 1: Suppose that a sequence has reached period 15. What is the

chance that this sequence will continue with another period - period 16?

. Would your answer be any different if we replaced 15

with 5 and 16 with 6? Circle one: yes / no.

Question 2: Suppose a sequence ends (a 6 is rolled) and you have n assets.

What is the value of those n assets? . Suppose instead,

the sequence continued into another period (a 1-5 is rolled)-how many assets

would you hold in the next period? .

For questions 3-6 below: suppose at the start of this period you are given 70

francs. In addition, you own 3 assets.

Question 3: What is the maximum number of assets you can sell at the start

of the 3-minute trading period? .

Question 4: What is the total number of francs you will have available

at the start of the trading period (including francs from assets owned)?

. If you do not buy or sell any assets during the 3-minute

trading period, what would be your end-of-period dollar payoff? .

Question 5: Now suppose that, during the 3-minute trading period, you sold

2 of your 3 assets: specifically, you sold one asset for a price of 4 francs and

the other asset for a price of 8 francs. What is your end-of-period franc total

in this case? . What would be your dollar payoff for the

period? . What is the number of assets you would have at

the start of the next period (if there is one)? .

Question 6: Suppose that instead of selling assets during the trading period

(as in question 5), you instead bought one more asset at a price of 18 francs.

What would be your end-of-period franc total in this case? .

What would be your dollar payoff for the period? . What

is the number of assets you will have at the start of the next period (if there

is one)? .
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VI. Questions

Now is the time for questions. If you have a question about any aspect of the

instructions, please raise your hand.

What follows below is the fourth paragraph of the instructions for subjects

in the L2 and L3 treatments.

Please open your folder and look at the “Payoff Table” showing how your

end-of-period franc balance converts into dollars. The “Payoff Chart” pro-

vides a graphical illustration of the payoff table. There are several things to

notice. First, the lowest number in the payoff table is 11 francs. You are

not permitted to hold less than 11 francs at any time during the experiment.

Second, the more francs you earn in a period, the higher will be your dollar

earnings for that period. Finally, the dollar payoff from each additional franc

that you earn in a period is the same; the formula for converting between

francs and dollars is fixed and is given at the bottom of your table.
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ENDOWMENT SHEET
[Type 1 subject, d̄ = 2]

This information is private. Please do

not share with others.

Initial franc balance in all odd periods (first,

third, fifth, etc.): 110

Initial franc balance in all even periods (second,

fourth, sixth, etc.): 44

Assets you own in the first period: 1

Francs paid per asset at start of each period: 2

Therefore, you will begin the first period with

110 + 1*2 = 112 francs
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ENDOWMENT SHEET
[Type 2 subject, d̄ = 2]

This information is private. Please do

not share with others.

Initial franc balance in all odd periods (first,

third, fifth, etc.): 24

Initial franc balance in all even periods (second,

fourth, sixth, etc.): 90

Assets you own in the first period: 4

Francs paid per asset at start of each period: 2

Therefore, you will begin the first period with

24 + 4*2 = 32 francs
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ENDOWMENT SHEET
[Type 1 subject, d̄ = 3]

This information is private. Please do

not share with others.

Initial franc balance in all odd periods (first,

third, fifth, etc.): 110

Initial franc balance in all even periods (second,

fourth, sixth, etc.): 44

Assets you own in the first period: 1

Francs paid per asset at start of each period: 3

Therefore, you will begin the first period with

110 + 1*3 = 113 francs
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ENDOWMENT SHEET
[Type 2 subject, d̄ = 3]

This information is private. Please do

not share with others.

Initial franc balance in all odd periods (first,

third, fifth, etc.): 24

Initial franc balance in all even periods (second,

fourth, sixth, etc.): 90

Assets you own in the first period: 4

Francs paid per asset at start of each period: 3

Therefore, you will begin the first period with

24 + 4*3 = 36 francs
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[Type 1 subject, concave treatments (C2 and C3)]
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[Type 1 subject, concave treatments (C2 and C3)]
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[Type 2 subject, concave treatments (C2 and C3)]
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[Type 2 subject, concave treatments (C2 and C3)]
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[Type 1 subject, linear treatments (L2 and L3)]
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[Type 1 subject, linear treatments (L2 and L3)]
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[Type 2 subject, linear treatments (L2 and L3)]
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[Type 2 subject, linear treatments (L2 and L3)]
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Instructions [Holt-Laury Paired Lottery Task]

You will face a sequence of 10 decisions. Each decision is a paired choice between two options,

labeled “Option A” and “Option B”. For each decision you must choose either Option A or

Option B. You do this by clicking next to the radio button corresponding to your choice on

the computer screen. After making your choice, please also record it on the attached record

sheet under the appropriate headings.

The sequence of 10 decisions you will face are as follows:

Decision Option A Option B

1 Receive $6.00 10 out of 100 draws OR Receive $11.55 10 out of 100 draws OR

Receive $4.80 90 out of 100 draws Receive $ 0.30 90 out of 100 draws

2 Receive $6.00 20 out of 100 draws OR Receive $11.55 20 out of 100 draws OR

Receive $4.80 80 out of 100 draws Receive $ 0.30 80 out of 100 draws

3 Receive $6.00 30 out of 100 draws OR Receive $11.55 30 out of 100 draws OR

Receive $4.80 70 out of 100 draws Receive $ 0.30 70 out of 100 draws

4 Receive $6.00 40 out of 100 draws OR Receive $11.55 40 out of 100 draws OR

Receive $4.80 60 out of 100 draws Receive $ 0.30 60 out of 100 draws

5 Receive $6.00 50 out of 100 draws OR Receive $11.55 50 out of 100 draws OR

Receive $4.80 50 out of 100 draws Receive $ 0.30 50 out of 100 draws

6 Receive $6.00 60 out of 100 draws OR Receive $11.55 60 out of 100 draws OR

Receive $4.80 40 out of 100 draws Receive $ 0.30 40 out of 100 draws

7 Receive $6.00 70 out of 100 draws OR Receive $11.55 70 out of 100 draws OR

Receive $4.80 30 out of 100 draws Receive $ 0.30 30 out of 100 draws

8 Receive $6.00 80 out of 100 draws OR Receive $11.55 80 out of 100 draws OR

Receive $4.80 20 out of 100 draws Receive $ 0.30 20 out of 100 draws

9 Receive $6.00 90 out of 100 draws OR Receive $11.55 90 out of 100 draws OR

Receive $4.80 10 out of 100 draws Receive $ 0.30 10 out of 100 draws

10 Receive $6.00 100 out of 100 draws OR Receive $11.55 100 out of 100 draws OR

Receive $4.80 0 out of 100 draws Receive $ 0.30 0 out of 100 draws

After you have made all 10 decisions, the computer program will randomly select 1 of the

10 decisions and your choice for that decision will be used to determine your payoff. All 10

decisions have the same chance of being chosen.

Notice that for each decision, the two options describe two different amounts of money you

can receive, depending on a random draw. The random draw will be made by the computer
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and will be a number (integer) from 1 to 100 inclusive. Consider Decision 1. If you choose

Option A, then you receive $6.00 if the random number drawn is 10 or less, that is, in 10 out

of 100 possible random draws made by the computer, or 10 percent of the time, while you

receive $4.80 if the random number is between 11 and 100, that is in 90 out of 100 possible

random draws made by the computer, or 90 percent of the time. If you choose Option B,

then you receive $11.55 if the random number drawn is 10 or less, that is, in 10 out of

100 possible random draws made by the computer, while you receive $0.30 if the random

number is between 11 and 100, that is in 90 out of 100 possible random draws made by the

computer, or 90 percent of the time. Other decisions are similar, except that your chances of

receiving the higher payoff for each option increase. Notice that all decisions except decision

10 involve random draws. For decision 10, you face a certain (100 percent) chance of $6.00

if you choose Option A or a certain (100 percent) chance of $11.55 if you choose Option B.

Even though you make 10 decisions, only ONE of these decisions will be used to determine

your earnings from this experiment. All 10 decisions have an equal chance of being chosen

to determine your earnings. You do not know in advance which of these decisions will be

selected.

Consider again decision 1. This will appear to you on your computer screen as follows:

The pie charts help you to visualize your chances of receiving the two amounts presented by

each option. When you are ready to make a decision, simply click on the button below the

option you wish to choose. Please also circle your choice for each of the 10 decisions on your

record sheet. When you are satisfied with your choice, click the Next button to move on to

the next decision. You may choose Option A for some decisions and Option B for others

and you may change your decisions or make them in any order using the Previous and Next

buttons.

63



When you have completed all 10 choices, and you are satisfied with those choices you will

need to click the Confirm button that appears following decision 10. The program will check

that you have made all 10 decisions; if not, you will need to go back to any incomplete

decisions and complete those decisions which you can do using the Previous button. You

can also go back and change any of your decisions prior to clicking the confirm button by

using the Previous button.

Once you have made all 10 decisions and clicked the Confirm button, the results screen

will tell you the decision number 1, 2,. . . 10, that was randomly selected by the computer

program. Your choice of option A or B for that decision (and that decision only) will then be

used to determine your dollar payoff. Specifically, the computer will draw a random number

between 1 and 100 (all numbers have an equal chance) and report to you both the random

number drawn and the payoff from your option choice.

Your payoff will be added to the amount you have already earned in today’s experiment.

Please circle the decision that was chosen for payment on your record sheet and write down

both the random number drawn by the computer program and the amount you earned from

the option you chose for that decision on your record sheet. On the computer monitor,

type in your subject ID number, which is the same number used to identify you in the first

experiment in today’s session. Then click the ”Save and Close” button.

Are there any questions before we begin?

Please do not talk with anyone while these decisions are being made. If you have a question

while making decisions, please raise your hand.
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Record Sheet Player ID Number

Circle Option Choice

Decision 1 A B

Circle Option Choice

Decision 2 A B

Circle Option Choice

Decision 3 A B

Circle Option Choice

Decision 4 A B

Circle Option Choice

Decision 5 A B

Circle Option Choice

Decision 6 A B

Circle Option Choice

Decision 7 A B

Circle Option Choice

Decision 8 A B

Circle Option Choice

Decision 9 A B

Circle Option Choice

Decision 10 A B

At the end of this experiment, circle the Decision number selected by the computer program

for payment. Write down the random number drawn for the selected decision (between 1 and

100): Write down your payment earned for this part of the experiment:

$
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