An Experimental Test of the Lucas Asset Pricing Model

Sean Crockett^{*}

John Duffy[†]

Baruch College (CUNY)

University of California, Irvine

November 4, 2014

Abstract

We implement a dynamic asset pricing experiment in the spirit of Lucas (1978) with storable assets and non-storable cash. In one treatment we impose diminishing marginal returns to cash to incentivize consumption-smoothing across periods, while in a second treatment there is no induced motive for trade. In the former case subjects smooth consumption, and assets trade at a discount relative to the risk-neutral fundamental price. This under-pricing is a departure from the "bubbles" observed in the experimental asset pricing experiments of Smith et al. (1988). In our second treatment with no induced motive for trade, assets trade at a premium relative to expected value and shareholdings are highly concentrated.

JEL Codes: C90, D51, D91, G12.

Keywords: Asset Pricing, Lucas Tree Model, Experimental Economics, General Equilibrium, Intertemporal Choice, Macrofinance, Consumption Smoothing, Risk Attitudes.

An earlier (2010) draft of this paper circulated under the title "A Dynamic General Equilibrium Approach to Asset Pricing Experiments." For useful comments we thank the editor, Dimitri Vayanos and four referees as well as Elena Asparouhova, Peter Bossaerts, Craig Brown, Guillaume Frechette, John Geanakoplos, Steven Gjerstad, David Porter, Stephen Spear and seminar participants at various conferences and universities.

^{*}Contact: sean.crockett@baruch.cuny.edu

[†]Contact: duffy@uci.edu

1 Introduction

The consumption-based general equilibrium approach to asset pricing, as pioneered in the work of Stiglitz (1970), Lucas (1978) and Breeden (1979), remains a workhorse model in the literature on financial asset pricing in macroeconomics, or *macrofinance*. This approach relates asset prices to individual risk and time preferences, dividends, aggregate disturbances and other fundamental determinants of an asset's value.¹ While this class of theoretical models has been extensively tested using archival field data, the evidence to date has not been too supportive of the models' predictions. For instance, estimated or calibrated versions of the standard model generally under-predict the actual premium in the return to equities relative to bonds, the so-called "equity premium puzzle" (Hansen and Singleton 1983, Mehra and Prescott 1985, Kocherlakota 1996), and the actual volatility of asset prices is typically much greater than the model's predicted volatility based on changes in fundamentals alone – the "excess volatility puzzle" (Shiller 1981, LeRoy and Porter 1981).²

A difficulty with testing this model using field data is that important parameters like individual risk and time preferences, the dividend and income processes, and other determinants of asset prices are unknown and have to be calibrated, approximated or estimated in some fashion. An additional difficulty is that the available field data, for example data on aggregate consumption, are measured with error (Wheatley 1988) or may not approximate well the consumption of asset market participants (Mankiw and Zeldes 1991). A typical approach is to specify some dividend process and calibrate preferences using micro-level studies that may not be directly relevant to the domain or frequency of data examined by the macrofinance researcher.

In this paper we follow a different path, by designing and analyzing data from a laboratory experiment that implements a simple version of an infinite horizon, consumption-based general equilibrium model of asset pricing. In the lab we control the income and dividend processes, and can induce the stationarity associated with an infinite horizon and time discounting by introducing an indefinite horizon with a constant continuation probability. We can precisely measure individual consumption and asset holdings and estimate each individual's risk preferences separately from those implied by his market activity, providing us with a clear picture of the environment in which agents are making asset pricing decisions. We can also reliably induce heterogeneity in agent types to create a clear motivation for subjects to engage in trade, whereas the theoretical literature frequently presumes a representative

¹See, e.g., Cochrane (2005) and Lengwiler (2004) for surveys.

²Nevertheless, as Cochrane (2005, p. 455) observes, while the consumption-based model "works poorly in practice... it is in some sense the only model we have. The central task of financial economics is to figure out what are the real risks that drive asset prices and expected returns. Something like the consumption-based model–investor's first-order conditions for savings and portfolio choice–has to be the starting point."

agent and derives equilibrium asset prices at which the equilibrium volume of trade is zero. The degree of control afforded by the lab presents an opportunity to diagnose the causes of specific deviations from theory which are not identifiable using field data alone.

There already exists a literature testing asset price formation in dynamic laboratory economies, but the design of these experiments departs in significant ways from consumptionbased macrofinance models.³ The early experimental literature (e.g., Forsythe, Palfrey and Plott 1982, Plott and Sunder 1982, and Friedman, Harrison and Salmon 1984) instituted markets comprised of several 2-3 period cycles. Each subject was assigned a type which determined his endowment of experimental currency units (commonly called "francs") and asset shares in the first period of a cycle as well as his deterministic type-dependent dividend stream. Francs and assets carried across periods within a cycle. At the end of the cycle's final period, francs were converted to U.S. dollars at a linear rate and paid to subjects, while assets became worthless. Each period began with trade in the asset and ended with dividend payments. The main finding from this literature is that market prices effectively aggregate private information about dividends and tend to converge toward rational expectations values. While such results are in line with the efficient markets view of asset pricing, the primary motivation for exchange owed to heterogeneous dividend values rather than intertemporal consumption-smoothing as in the framework we study.

In later, highly influential work by Smith, Suchanek, and Williams (1988) (hereafter SSW), a simple four-state i.i.d. dividend process was made common for all subjects. A finite number of trading periods ensured that the expected value of the asset declined at a constant rate over time. Unlike the aforementioned heterogeneous dividends literature there was no induced motive for subjects to engage in any trade at all. Nevertheless SSW observed substantial trade in the asset, with prices typically starting below the fundamental value then rapidly soaring above it for a sustained duration of time before collapsing near the end of the experiment. The "bubble-crash" pattern of the SSW design has been replicated by many authors under a variety of treatment conditions, and has become the primary focus of a large experimental literature on asset price formation (key papers include Porter and Smith (1995), Lei et al. (2001), Dufwenberg, et al. (2005), Haruvy and Noussair (2006), Haruvy et al. (2007), Hussam et al. (2008), Lei and Vesely (2009), Lugovskvy et al. (2011) and Kirchler et al. (2012); for a review of the literature, see chapters 29 and 30 in Plott and

³There is also an experimental literature testing the static capital-asset pricing model (CAPM), see, e.g., Bossaerts and Plott (2002), Asparouhova, Bossaerts, and Plott (2003), Bossaerts, Plott and Zame (2007). In contrast to consumption-based asset pricing, the CAPM is a *portfolio-based* approach and presumes that agents have only asset-derived income. Further, the CAPM is not an explicitly dynamic model; laboratory investigations of the CAPM involve repetition of a static, one-period economy. Cochrane (2005) does note that intertemporal versions of the CAPM can be viewed as a special case of the consumption-based approach to asset pricing where the production technology is linear and there is no labor/endowment income.

Smith (2008)). Much attention has been devoted to various means by which the frequency of bubbles can be reduced or even eliminated by researchers using some variant of the SSW design (e.g., adding short sales or futures markets, computing expected values for subjects, implementing a constant dividend, inserting "insiders" who have previously experienced bubbles, using professional traders in place of students as subjects, framing the problem differently, or using different price determination mechanisms).⁴ In most of these designs, bubbles turn out to be difficult to inhibit.

Experiments in the SSW tradition share the following features. First, subjects are given a large, one-time endowment (or loan) of francs. Thereafter, an individual's franc balance varies with his with asset purchases, sales, and dividends earned on assets held. These individual franc balances carry over from one period to the next. Following the final period of the experiment, franc balances are converted into money earnings using a linear exchange rate. This design differs from the sequence–of–budget–constraints faced by agents in standard intertemporal models; in essence it abstracts from the consumption-smoothing rationale for trade in assets.

In contrast, our subjects receive an exogenous endowment of francs at the start of each new period, which we interpret as income. Next, a franc-denominated dividend is paid on each share of the asset a subject holds. Then an asset market is opened, with prices denominated in francs, so that each transaction alters the subject's franc balances. Critically, after the asset market has closed, each subject's end-of-period franc balance is converted to dollars and stored in a private payment account that cannot be used for asset purchases or consumption in any future period of the session, while her assets carry forward to the next period. Thus in our experimental design all francs disappear from the system at the end of each period; that is, they are "consumed," so that assets are durable "trees" and francs are perishable "fruit" in the language of Lucas (1978).⁵

We motivate trade in the asset in our baseline treatment by introducing heterogeneous cyclic incomes and a concave franc-to-dollar exchange rate. Thus long-lived assets become a vehicle for intertemporally smoothing consumption, a critical feature of most macrofinance models which are built around the permanent income model of consumption but one that

⁴There is some experimental research on asset price determination by Hommes et al. (2005, 2008) that uses a different intertemporal framework – one that exploits the no arbitrage relationship between risky and risk-free assets. These experiments elicit subjects' forecasts of future risky asset prices only and a computer program then uses subjects' forecasts to calculate subjects' optimal current demand for the risky asset. Equating aggregate demand with a fixed supply of the asset yields actual current prices, against which past price forecasts are evaluated. Thus the main goal of subjects in the Hommes et al. experimental design is to correctly forecast prices, while in our framework, the main goal of subjects is to trade (buy and sell) assets so as to implement their intertemporal optimization (consumption-smoothing) plan.

⁵Notice that frances play a dual role as "consumption good" and "medium of exchange" within a period, but assets are the only *intertemporal* store of value in our design.

is absent from the experimental asset pricing literature. In our alternative treatment, the franc-to-dollar exchange rate is made linear (as in SSW-type designs). Since the dividend process is common to all subjects there is no induced reason for subjects to trade in the asset at all in the second treatment, a design feature connecting our baseline macrofinance economy with the laboratory asset bubble design of SSW.

Most consumption-based asset pricing models posit stationary, infinite planning horizons, while most dynamic asset pricing experiments impose finite horizons with declining asset values. We induce stationarity by implementing an indefinite horizon in which assets become worthless at the end of each period with a known constant probability, a standard approach in a wide range of economic experiments. If subjects are risk-neutral expected utility maximizers, our indefinite horizon economy features the same steady state equilibrium price and shareholdings as its infinite horizon constant time discounting analogue.

We also consider the consequences of departures from risk-neutral behavior. Our analysis of this issue is both theoretical and empirical. Specifically, we elicit a measure of risk tolerance from subjects in most of our experimental sessions using the Holt-Laury (2002) paired lottery choice instrument. To our knowledge no prior study has seriously investigated risk preferences in combination with a multi-period asset pricing experiment.

While our experimental design is mainly intended to serve as a bridge between the experimental asset pricing and macrofinance literatures, it also has some relevance for laboratory research on intertemporal consumption-smoothing. Experimental investigations of intertemporal consumption smoothing (without tradeable assets) is the focus of several papers: Hey and Dardanoni (1988), Noussair and Matheny (2000), Ballinger et al. (2003) and Carbone and Hey (2004). A main finding from that literature is that subjects have difficulty learning to intertemporally smooth their consumption in the manner prescribed by the solution to a dynamic optimization problem; in particular, current consumption appears to be too closely related to current income relative to the predictions of the optimal consumption function. By contrast, in our experimental design where intertemporal consumption smoothing must be implemented by buying and selling assets at market-determined prices, we find strong evidence that subjects are able to consumption-smooth in a manner that is qualitatively (if not quantitatively) similar to the dynamic, equilibrium solution. Our finding in support of consumption smoothing is likely owing to the considerably simpler and non-stochastic income process that we use in our design; subjects in our experiment need to learn only how to repeatedly smooth consumption across two, perfectly known and alternating income states (high and low). By contrast, in the experimental consumption smoothing literature, subjects are confronted with smoothing a stochastic income process over a much longer horizon (e.g., lifecycle horizons of 25 or more periods as in Carbone and Hey (2004) and Ballinger et al. (2003)). As a consequence, subjects have fewer opportunities to learn how to consumption smooth over this longer horizon than in our design, where subjects have multiple opportunities to smooth consumption over the indefinitely repeated two period income process. Our different finding on consumption smoothing may also be related to the endogenous determination of asset prices (the savings vehicle for consumption smoothing) in our design and so we also consider treatments where asset prices are exogenously given, but where subjects remain incentivized to consumption smooth. In the latter case, we find evidence of even stronger consumption smoothing.

The main findings of our experiment can be summarized as follows. First, the stochastic horizon in the linear exchange rate treatment (where, as in SSW, there is no induced motive to trade the asset) does not suffice to eliminate asset price "bubbles." Indeed, we often observe sustained prices above fundamentals in this environment; on average, prices are 32%above the asset's fundamental value in these sessions. However, the frequency, magnitude, and duration of asset price bubbles are significantly reduced in our concave exchange rate treatment; in fact, assets trade at an average discount relative to their risk-neutral fundamental price of 24% (a fact which suggests a modified design might help to identify an equity premium, although the lack of a risk-free bond prevents us from doing so here). The higher prices in the linear exchange rate economies are driven by a concentration of shareholdings among the most risk-tolerant subjects in the market as identified by the Holt-Laury measure of risk attitudes. By contrast, in the concave exchange rate economies, most subjects actively traded shares in each period so as to smooth their consumption in the manner predicted by theory; consequently, shareholdings were much less concentrated. Thus market thin-ness and high prices appear to be endogenous features of our more naturally speculative treatment. We conclude that the frequency, magnitude, and duration of asset price bubbles can be reduced by the presence of an incentive to intertemporally smooth consumption in an otherwise identical economy, a key feature of most dynamic asset pricing models absent from the SSW design.

In concurrent experimental research, Asparouhova et al. (2011) study a Lucas economy in which there are short-lived francs and <u>two</u> long-lived assets: trees with stochastic dividends and risk-free (console) bonds. Rather than induce consumption-smoothing through a concave exchange rate, they pay subjects for cash holdings only during the terminal period of the indefinite sequence, and thus rely on innate subject risk aversion to smooth consumption; i.e., a risk-averse subject in their design should avoid ending a period with too little cash in the event that period is terminal.⁶ Thus Asparouhova et al. use endogenous consumption-smoothing to investigate important questions in finance like the equity

 $^{^{6}}$ To address the concern about potential wealth effects in our design, we note that in an indefinite horizon experiment, Sherstyuk, Tarui, and Saijo (2013) find no evidence that subjects behave differently when paid only for the terminal period rather than all periods.

premium puzzle and the covariation of financial returns with aggregate wealth, while we focus on demonstrating the comparative static impact of consumption-smoothing when such incentives are exogenously weak or strong.

2 The Lucas asset pricing framework

In this section we first describe a heterogeneous agent version of Lucas's (1978) infinite horizon economy. We then present the indefinite horizon version we actually implement in the laboratory, and demonstrate steady state equilibrium equivalence between the two models under the assumption that subjects are risk-neutral expected utility maximizers. In Appendix B we consider how the model is impacted by departures from risk neutrality.

2.1 The infinite horizon economy

Time t is discrete, and there are two agent types, i = 1, 2, who participate in an infinite sequence of markets. There is a fixed supply of an infinitely durable asset (trees), shares of which yield a dividend (fruit) in amount d_t per period. Dividends are paid in units of the single non-storable consumption good at the beginning of each period. Let s_t^i denote the number of asset shares agent i owns at the beginning of period t, and let p_t be the price of an asset share in period t. In addition to dividend payments, agent i receives an exogenous endowment of the consumption good y_t^i at the beginning of every period. His initial endowment of shares is denoted s_1^i .

Agent i faces the following objective function:

$$\max_{\{c_t^i\}_{t=1}^{\infty}} E_1 \sum_{t=1}^{\infty} \beta^{t-1} u^i(c_t^i),$$

subject to

$$c_t^i \le y_t^i + d_t s_t^i - p_t \left(s_{t+1}^i - s_t^i \right)$$

for $t \geq 1$ and a transversality condition ruling out non-fundamental solutions:

$$\lim_{T \to \infty} E_t \beta^T u^{i\prime} (c^i_{t+T}) p_{t+T} = 0$$

Here, c_t^i denotes consumption of the single perishable good by agent *i* in period *t*, $u^i(\cdot)$ is a strictly monotonic, strictly concave, twice differentiable utility function, and $\beta \in (0, 1)$ is the (common) discount factor. The budget constraint is satisfied with equality by monotonicity. We will impose no borrowing and no short sale constraints on subjects in the experiment, but the economy will be parameterized in such a way that these restrictions only bind out-of-equilibrium. Substituting the budget constraint for consumption in the objective function,

and using asset shares as the control, we can restate the problem as:

$$\max_{\{s_{t+1}^i\}_{t=1}^\infty} E_1 \sum_{t=1}^\infty \beta^{t-1} u^i (y_t^i + d_t s_t^i - p_t (s_{t+1}^i - s_t^i)).$$

The first order condition for each time $t \ge 1$, suppressing agent superscripts for notational convenience, is:

$$u'(c_t)p_t = E_t \beta u'(c_{t+1})(p_{t+1} + d_{t+1}).$$

Rearranging we have the asset pricing equation:

$$p_t = E_t \mu_{t+1} (p_{t+1} + d_{t+1}) \tag{1}$$

where $\mu_{t+1} = \beta \frac{u'(c_{t+1})}{u'(c_t)}$, a term that is referred to variously as the stochastic discount factor, the pricing kernel, or the intertemporal marginal rate of substitution. If we assume, for example, that $u(c) = \frac{c^{\gamma}}{1-\gamma}$ (the commonly studied CRRA utility), we have $\mu_{t+1} = \beta \left(\frac{c_t}{c_{t+1}}\right)^{\gamma}$. Notice from equation (1) that the price of the asset depends on 1): individual risk parameters such as γ ; 2): the rate of time preference, r, which is implied by the discount factor $\beta = 1/(1+r)$; 3): the income process; and 4): the dividend process, which is assumed to be known and common for both player types.

We assume the aggregate endowment of francs and assets is constant across periods.⁷ We further suppose the dividend is equal to a constant value $d_t = \bar{d}$ for all t, so that a constant steady state equilibrium price exists.⁸ The latter assumption and the application of some algebra to equation (1) yields:

$$p^* = \frac{d}{E_t \frac{u'(c_t)}{\beta u'(c_{t+1})} - 1}.$$
(2)

This equation applies to each agent, so if one agent expects consumption growth or decay they all must do so in equilibrium. Since the aggregate endowment is constant, strict monotonicity of preferences implies that there can be no growth or decay in consumption for all individuals in equilibrium. Thus it must be the case that in a steady state competitive equilibrium each agent perfectly smoothes his consumption, that is, $c_t^i = c_{t+1}^i$, so equation (2) simplifies to the standard *fundamental price* equation:

$$p^* = \frac{\beta}{1-\beta}\bar{d}.\tag{3}$$

⁷The absence of income growth in our design rules out the possibility of "rational bubbles".

⁸If the dividend is stochastic, it is straightforward to show that a steady state equilibrium price does *not* exist. Instead, the price will depend (at a minimum) upon the current realization of the dividend. See Mehra and Prescott (1985) for a derivation of equilibrium pricing in the representative agent version of this model with a finite-state Markovian dividend process. We adopt the simpler, constant dividend framework since our primary motivation was to induce an economic incentive for asset trade in a standard macrofinance setting. We note Porter and Smith (1995) show that implementing constant dividends in the SSW design does not substantially reduce the incidence or magnitude of asset price bubbles.

2.2 The indefinite horizon economy

Obviously we cannot observe infinite periods in a laboratory study, and the economy is too complex to elicit continuation strategies from subjects in order to compute discounted payoff streams after a finite number of periods of real-time play. As we describe in greater detail in the following section, in place of implementing an infinite horizon with constant time discounting, we follow Camerer and Weigelt (1993) and study an indefinite horizon with a constant continuation probability. This technique for implementing infinite horizon environments in a laboratory setting is quite standard in game theory experiments (e.g., Dal Bó and Fréchette 2011) and has a rich history, beginning with Roth and Murnighan (1978).

We will refer to units of the consumption good as "francs". The utility function $u^i(c^i)$ in the experiment thus serves as a map from subject *i*'s end-of-period franc balance (consumption) to U.S. dollars. While shares of the asset transfer across periods, once francs for a given period are converted into dollars they *disappear from the system*, as the consumption good is not storable. Dollars accumulate across periods in a non-transferable account and are paid in cash at the end of the experiment. The indefinite horizon economy is terminated with probability $1 - \beta$ at the end of each period, in which event shares of the asset today is worth more than a share tomorrow not because subjects are impatient as in the infinite horizon model, but because the asset may cease to have value in the next period.

Let $m_t = u(c_t)$ and $M_t = \sum_{s=0}^t m_s$ denote the sum of dollars a subject has earned through period t given initial wealth m_0 (which may be zero or include some combination of the promised show-up fee, cumulative earnings during the experimental session, or even an individual's personal wealth outside of the laboratory). Superscripts indexing individual subjects are suppressed for notational convenience. Let v(m) be a subject's indigenous (homegrown) utility from m dollars, and suppose this function is strictly concave, strictly monotonic, and twice differentiable. Then the subject's expected value from participating in an indefinite horizon economy is

$$V = \sum_{t=1}^{\infty} \beta^{t-1} (1-\beta) v (M_t).$$
(4)

The sequence $\langle s_t \rangle_{t=2}^{\infty}$ is the control used to adjust V. Maximizing (4) with respect to s_{t+1} subject to the per-period budget constraint $p_t s_{t+1} \leq p_t (s_t + d) + y_t - c_t$ yields the first-order condition for $t \geq 1$:

$$u'(c_t) p_t \sum_{s=t}^{\infty} \beta^{s-t} E_t \{ v'(M_s) \} = \sum_{s=t}^{\infty} \beta^{s-t+1} E_t \{ v'(M_{s+1}) u'(c_{t+1}) (d+p_{t+1}) \}.$$
(5)

Again focusing on a steady state price, the subject's first-order condition reduces to:

$$p = \frac{d}{\frac{u'(c_t)}{u'(c_{t+1})} \left(1 + \frac{v'(M_t)}{\sum_{s=t}^{\infty} \beta^{s-t+1}v'(M_{s+1})}\right) - 1}.$$
(6)

Notice the similarity of (6) to (2). This is not a coincidence; in the limit as indigenous risk preferences, v(m), are linear, the indigenous marginal utility of wealth, v'(m) is constant, and applying a little algebra to (6) produces (2). This justifies our earlier claim that the infinite horizon economy and its indefinite horizon economy analogue share the same steady-state equilibrium provided that subjects are risk-neutral. We consider departures from indigenous risk neutrality in Appendix B.

3 Experimental design

We seek to determine the extent to which the price and share-holding predictions of the Lucas asset pricing environment are supported within a laboratory implementation where we have good control over the environment. The expected value of holding the asset is difficult to compute relative to the SSW framework and no participant possesses sufficient information to calculate the equilibrium price; we assess the extent to which these values are learned through fundamentals (e.g, the dividend on the asset, the discount factor, the utility/payoff function, and the income process) and market activity. We are further interested in the important premise of consumption-based asset pricing models that agents use the asset, which in our framework is the sole store of value, to intertemporally smooth their consumption. Finally, we wish to challenge the robustness of our findings by considering the comparative static implications of changes to the parameterization of the model economy.

There are many interesting re-parameterizations of the model but we choose to examine just two. First, we consider whether and how changes in the dividend process affect the price of the asset; after all, according to the theory, the present discounted sum of all future dividends is the primary determinant of the asset's price. Second, we examine whether the strength of the consumption-smoothing objective matters by varying the curvature of the agents' induced utility function over consumption. The latter treatment variation enables us to connect and differentiate our findings using the Lucas asset model with findings from multi-period asset pricing experiments of the type conducted by SSW.

Thus our experiment involves a 2×2 experimental design where the treatment variables are 1) the induced utility function, which is either strictly concave as in the Lucas model (1978, p. 1431) or linear as in SSW's approach, and 2) the dividend earned per share held of the asset, either high or low. We conducted twenty laboratory sessions (five per treatment) of the indefinite horizon economy introduced in Section 2.2. In each session there were twelve subjects, six of each induced type, for a total of 240 subjects. The endowments of the two subject types and their utility functions in all sessions are given in Table 1.

Type	No. Subjects	s_1^i	$\{y_t^i\} =$	$u^i(c) =$
1	6	1	110 if t is odd,	$\delta^1 + \alpha^1 c^{\phi^1}$
			44 if t is even	
2	6	4	24 if t is odd,	$\delta^2 + \alpha^2 c^{\phi^2}$
			90 if t is even	

Table 1: Induced Utility and Endowment Parameters

In every session the franc endowment, y_t^i , for each type i = 1, 2 followed the same deterministic two-cycle. Subjects were informed that the aggregate endowment of income and shares would remain constant throughout the session, but otherwise were only privy to information regarding their own income process, shareholdings, and induced utility functions. In each session dividends took a constant value of either $\bar{d} = 2$ or $\bar{d} = 3$, and either a linear or concave utility function was induced for both subject types. Thus our four treatments were C2 (concave utility, $\bar{d} = 2$), C3 (concave utility, $\bar{d} = 3$), L2 (linear utility, $\bar{d} = 2$), and L3 (linear utility, $\bar{d} = 3$).

Utility parameters were chosen so that subjects would earn \$1 per period in the risk neutral steady state competitive equilibrium in C2 and L2. By contrast, C2 subjects earn an average of \$0.45 per period in autarky (no trade). In L2 expected earnings in autarky equaled the competitive equilibrium earnings due to the linear exchange rate. A higher dividend results in modestly higher benchmark payments; in L3 and C3 subjects earn an average of \$1.06 per period in the risk neutral steady state competitive equilibrium while the autarkic payoff in C3 averaged \$0.58 per period. The utility function used in each treatment was presented to subjects both as a table and as a graph converting her end-of-period franc balance to dollars.

More precisely in our baseline C2 and C3 we set $\phi^i < 1$ and $\alpha^i \phi^i > 0.^9$ Given our twocycle income process, it is straightforward to show from (3) and the budget constraint that steady state shareholdings must also follow a two-cycle between the initial share endowment, $s_{odd}^i = s_1^i$, and

$$s_{even}^{i} = s_{odd}^{i} + \frac{y_{odd}^{i} - y_{even}^{i}}{\bar{d} + 2p^{*}}.$$
(7)

Notice that in equilibrium subjects smooth consumption by buying asset shares during high income periods and selling asset shares during low income periods. In C2 the equilibrium

⁹Specifically, $\phi^1 = -1.195$, $\alpha^1 = -311.34$, $\delta^1 = 2.6074$, $\phi^2 = -1.3888$, $\alpha^2 = -327.81$, and $\delta^2 = 2.0627$.

price is $p^* = 10$. Thus in equilibrium, according to equation (7), a type 1 subject holds 1 share in odd periods and 4 shares in even periods, and a type 2 subject holds 4 shares in odd periods and 1 share in even periods. In C3 the equilibrium price is $p^* = 15$. In equilibrium, type 1 subjects cycle between 1 and 3 shares, while type 2 subjects cycle between 4 and 2 shares.

Our primary variation on the baseline concave treatments was to set $\phi^i = 1$ for both agent types so that there was no longer an incentive to smooth consumption.¹⁰ Our aim in the linear treatments was to examine an environment that was closer to the SSW framework. In SSW's design, the dividend process was common to all subjects and dollar payoffs were linear in frances, so risk neutral subjects had no induced motivation to engage in trade. We hypothesized that in L2 and L3 we might observe assets trade at prices greater than the fundamental price, in line with SSW's bubble findings.

To derive the equilibrium price for linear utility (since the first-order conditions no longer apply), suppose there exists a steady state equilibrium price \hat{p} . Substituting each period's budget constraint we can re-write $U = \sum_{t=1}^{\infty} \beta^{t-1} u(c_t)$ as

$$U = \sum_{t=1}^{\infty} \beta^{t-1} y_t + (d+\hat{p}) s_1 + \sum_{t=2}^{\infty} \beta^{t-2} \left[\beta d - (1-\beta)\hat{p}\right] s_t.$$
(8)

Notice that the first two right-hand side terms in (8) are constant, because they consist entirely of exogenous, deterministic variables. If $\hat{p} = p^*$, the third right-hand term in (8) is equal to zero regardless of the sequence of future shareholdings, so clearly this is an equilibrium price; any feasible distribution of the aggregate endowment is a supporting equilibrium allocation (since agents are indifferent to buying or selling the asset). If $\hat{p} > p^*$, the third right-hand term is negative, so each agent would like to hold zero shares, but this cannot be an equilibrium since excess demand would be negative. If $\hat{p} < p^*$, this same term is positive, so each agent would like to buy as many shares as his no borrowing constraint would allow in each period, thus resulting in positive excess demand. Thus p^* is the unique steady state equilibrium price in the case of linear utility.

In all sessions of our experiment we imposed the following trading constraints on subjects:

$$y_t^i + d_t s_t^i - p_t (s_{t+1}^i - s_t^i) \ge 0,$$

 $s_t^i \ge 0,$

where the first constraint is a no borrowing constraint and the second is a no short sales constraint. These constraints do not impact the fundamental price in any treatment nor steady-state equilibrium shareholdings in the concave treatments. They do restrict the set

¹⁰In these linear treatments, $\alpha^1 = 0.0122$, $\alpha^2 = 0.0161$, and $\delta 1 = \delta^2 = 0$.

of equilibrium shareholdings in the linear treatment, which without these constraints must merely sum to the aggregate share endowment. No borrowing or short sales are standard restrictions in market experiments.

3.1 Induced discounting

As previously written, we sought to induce the stationarity associated with an infinite horizon and constant time discounting model by implementing an indefinite horizon with a stochastic number of trading periods. Each period lasted for three minutes during which time units of the asset could be bought and sold in a centralized marketplace. At the end of each period, one subject in rotation took a turn rolling a six-sided die in public view of the other participants. If the die roll in period t was between 1 and 5 inclusive, the economy continued with another period; each individual's asset position was carried over to the start of period t + 1. If the die roll was 6, the economy abruptly came to an end and all subjects' assets were declared worthless. Thus, the probability that assets continued to have value in future trading periods was 5/6 (.833), analogous to a rate of time preference $\beta = 5/6$.

To give subjects the opportunity to learn from both "good" and "bad" realizations, our experimental sessions were set up so that there would likely be several such sequences of trading periods. We recruited subjects for a three-hour block of time. We informed them they would participate in one or more "sequences," each consisting of an indefinite number of "trading periods" for at least one hour after the instructions had been read and all questions answered. Following one hour of play (during which time one or more sequences were typically completed), subjects were instructed that the sequence they were currently playing would be the last one played, i.e., the next time a 6 was rolled the session would come to a close. This design ensured that we would get a reasonable number of trading periods, while at the same time limited the possibility that the session would not finish within the 3-hour time-frame for which subjects had been recruited. Indeed, we never failed to complete the final sequence within three hours.¹¹ The expected mean (median) number of trading periods per sequence in our design is 6 (4), respectively. The realized mean (median) were 5.2 (4) in our sessions. On average there were 3.4 sequences per session.

¹¹In the event that we did not complete the final sequence by the three hour limit, we instructed subjects at the beginning of the experiment that we would bring all of them back to the laboratory as quickly as possible to complete the final sequence. Subjects would be paid for all sequences that had ended in the current session, but would be paid for the continuation sequence only when it had been completed. Their financial stake in that final sequence would be derived from at least 25 periods of play, which makes such an event very unlikely (about 1%) but quite a compelling motivator to get subjects back to the lab. As it turned out, we did not have to bring back any group of subjects in any of the sessions we report on here, as they all finished within the 3-hour time-frame for which subjects had been recruited.

3.2 The trading mechanism

Another methodological issue is how to implement asset trading. General equilibrium models of asset pricing simply combine first-order conditions for portfolio choices with market clearing conditions to obtain equilibrium prices, but do not specify the actual mechanism by which prices are determined and assets are exchanged. We adopted the double auction since it is well known to reliably converge to competitive equilibrium in a wide range of experimental markets. We used the double auction module found in Fischbacher's (2007) z-Tree software.

Specifically, prior to the start of each three-minute trading period t, each subject i was informed of his current asset position, s_t^i , and the number of frances he would have available for trade, $y_t^i + s_t^i \bar{d}$. After all subjects clicked a button indicating they understood their asset and franc positions, the trading period was begun. Subjects could post buy or sell orders for one unit of the asset at a time, though they were instructed that they could sell as many assets as they had available, or buy as many assets as they wished so long as they had sufficient francs. We instituted a standard bid-ask improvement rule: buy offers had to improve on (exceed) existing buy offers and sell offers had to improve on (undercut) existing sell offers to be posted in the (open) limit order book. Subjects could agree to buy or sell at a currently posted price (i.e., submit a market order) by clicking on the bid/ask, immediately after which the transaction was executed and the price publicly posted. After a trade the order book was cleared, but subjects could (and did) immediately begin reposting buy and sell orders. A history of all transaction prices in the trading period was always present on all subjects' screens, which also provided information on asset trade volume. In addition to this information, each subject's franc and asset balances were adjusted in real time in response to any transactions.

3.3 Subjects, payments and timing

Subjects were primarily undergraduates from the University of Pittsburgh. No subject participated in more than one session of this experiment. At the beginning of each session, the 12 subjects were randomly assigned a role as either a type 1 or type 2 agent, so that there were 6 subjects of each type. Subjects remained in the same role for the duration of the session. They were seated at visually isolated computer workstations and were given written instructions that were also read aloud prior to the start of play in an effort to make the instructions public knowledge. As part of the instructions, each subject was required to complete two quizzes to test comprehension of his induced utility function, the asset market trading rules and other features of the environment; the session did not proceed until all subjects had answered these quiz questions correctly. Instructions (including quizzes, payoff tables, charts and endowment sheets) are reproduced in Appendix C.¹² Subjects were recruited for a three hour session, but a typical session ended after around two hours. Subjects earned their payoffs from every period of every sequence played in the session. Mean (median) payoffs were \$22.65 (\$22.41) per subject in the linear sessions and \$18.75 (\$19.48) in the concave sessions, including a \$5 show-up payment but excluding the payment for the Holt-Laury individual choice experiment.¹³ Payments were higher in the linear sessions because it was a zero-sum market, whereas social welfare was uniquely optimized in the steady-state equilibrium in the concave sessions.

At the end of each period t, subject i's franc balance was declared her consumption level, c_t^i , for that period; the dollar amount of this consumption holding, $u^i(c_t^i)$, accrued to her cumulative cash earnings from all prior trading periods, which were paid at the completion of the session. The timing of events in our experimental design is summarized below:

;	t	dividends paid;	3-minute trading period	consumption takes place:	die roll: t	+1
		$\text{francs}{=}s_t^i \bar{d} + y_t^i,$	using a double auction	$c_t^i = s_t^i \bar{d} + y_t^i$	continue	
		$assets = s_t^i$.	to trade assets and francs.	$+\sum_{k_{t}^{i}=1}^{K_{t}^{i}} p_{t,k_{t}^{i}} \left(s_{t,k_{t}^{i}-1}^{i}-s_{t,k_{t}^{i}}^{i}\right).$	to $t+1$	
					w.p. 5/6,	
					else end.	

In this timeline, K_t^i is the number of transactions completed by *i* in period *t*, p_{t,k_t^i} is the price governing the *k*th transaction for *i* in *t*, and $s_{t,k_t^i}^i$ is the number of shares held by *i* after his *k*th transaction in period *t*. Thus $s_{t,0}^i = s_t^i$ and $s_{t,K_t^i}^i = s_{t+1}^i$. Of course, this summation does not exist if *i* did not transact in period *t*; in this "autarkic" case, $c_t^i = s_t^i \bar{d} + y_t^i$. In equilibrium, sale and purchase prices are predicted to be identical over time and across subjects, but under the double auction mechanism they can differ within and across periods and subjects.

3.4 Subject risk preferences

Following completion of the last sequence of trading periods, beginning with Session 7 we asked subjects to participate in a further brief experiment involving a single play of the Holt-Laury (2002) paired-lottery choice instrument. The Holt-Laury paired-lottery choice task is a commonly-used individual decision-making experiment for measuring individual risk attitudes. This second experimental task was not announced in advance; subjects were instructed that, if they were willing, they could participate in a second experiment that would last an additional 10-15 minutes for which they could earn an additional monetary payment

¹²Copies of the instructions and materials are available at http://www.socsci.uci.edu/~duffy/assetpricing/.

¹³Subjects earned an average of \$7.22 for the subsequent Holt-Laury experiment and this amount was added to subjects' total from the asset pricing experiment.

from the set {\$0.30, \$4.80, \$6.00, \$11.55}.¹⁴ All subjects agreed to participate in this second experiment. We had subjects use the same ID number in the Holt-Laury individual-decision making experiment as they used in the 12-player asset-pricing/consumption smoothing experiment enabling us to associate behavior in the latter with a measure of each individual's risk attitudes. Appendix C includes the instructions for the Holt-Laury paired-lottery choice experiment. The Java program used to carry out the Holt-Laury test may be found at http://www.socsci.uci.edu/~duffy/assetpricing/.

4 Experimental findings

We conducted twenty experimental sessions. Each session involved twelve subjects with no prior experience in our experimental design (240 subjects total). The treatments used in these sessions are summarized in Table 2.

Session	\bar{d}	u(c)	Holt-Laury test	Session	\bar{d}	u(c)	Holt-Laury test
1	2	concave	No	11	3	concave	Yes
2	3	concave	No	12	3	linear	Yes
3	2	linear	No	13	3	linear	Yes
4	3	linear	No	14	3	concave	Yes
5	2	linear	No	15	2	concave	Yes
6	2	concave	No	16	2	linear	Yes
7	3	linear	Yes	17	3	concave	Yes
8	3	concave	Yes	18	3	linear	Yes
9	2	concave	Yes	19	2	concave	Yes
10	2	linear	Yes	20	2	linear	Yes

 Table 2: Assignment of Sessions to Treatment

We began administering the Holt-Laury paired-lottery individual decision-making experiment following completion of the asset pricing experiment in sessions 7 through 20 after it became apparent to us that indigenous risk preferences might be playing an important role in our experimental findings. Thus in 14 of our 20 sessions, we have Holt-Laury measures of individual subject's tolerance for risk (168 of our 240 subjects, or 70%).

¹⁴These payoff amounts are 3 times those offered by Holt and Laury (2002) in their "low-payoff" treatment. We chose to scale up the possible payoffs in this way so as to make the amounts comparable to what subjects could earn over an average sequence of trading periods.

On average about 23 shares were traded in each period of the sessions of this experiment. Trading volume was a bit more than one share per period higher in the concave than linear sessions, and about 1.5 shares per period higher in high dividend than low dividend sessions. Mean (median) allocative efficiency – earnings as a fraction of the payoffs that were possible under the competitive equilibrium prediction – averaged 0.73 (0.80) for the concave economies with no difference by dividend, while the linear economies were fully efficient by construction. We summarize our main results as a number of different findings, beginning with the concave utility treatments.

4.1 Findings for induced concave utility

Finding 1 In the concave utility treatment ($\phi^i < 1$), observed transaction prices at the end of the session were generally less than or equal to $p^* = \frac{\beta}{(1-\beta)}\bar{d}$.

Figure 1 displays median transaction prices by period for the concave sessions, d = 2 is on the left and $\bar{d} = 3$ is on the right. Solid dots represent the first period of a new indefinite trading sequence. To facilitate comparisons across sessions, prices have been transformed into percentage deviations from the predicted equilibrium price (e.g., a price of -40% in panel (a), where $\bar{d} = 2$, reflects a price of 6, whereas a price of -40% in panel (b), where $\bar{d} = 3$, reflects a price of 9).

Figure 1: Equilibrium-normalized Prices, Concave Sessions

Of the ten concave utility sessions depicted in panels (a) and (b), half end relatively close to the asset's fundamental price (their deviations from the fundamental price range between -15% and 7%) while the other half finish well below it (deviations between -30% and -60%). Several sessions did experience upward pressure on prices above the fundamental price (most

notably sessions 8 and 9), but these "bubbles" were self-correcting by the end of the session, and in general prices trended down in the concave sessions, especially in the second half of the sessions (we'll provide more formal evidence of this statement in the discussion of Finding 3). We emphasize that these corrections were wholly endogenous rather than forced by a known finite horizon as in SSW. We further emphasize that while prices in the concave treatment lie at or below the prediction of $p^* = \frac{\beta}{(1-\beta)}\overline{d}$, subjects were never informed of this fundamental trading price (as *is* done in some of the SSW-type asset market experiments). Indeed in our design, p^* must be inferred from fundamentals alone, namely β and \overline{d} and a presumption that agents are forward-looking, risk-neutral expected utility maximizers.

We next address a main implication of consumption-based asset pricing models, that subjects use the asset to intertemporally smooth consumption. We report that:

Finding 2 In the concave utility treatments, there is strong evidence that subjects used the asset to intertemporally smooth their consumption.

Figure 2 shows the per capita shareholdings of type 1 subjects by period (the per capita shareholdings of type 2 subjects is five minus this number). Dashed vertical lines denote the final period of a sequence,¹⁵ dashed horizontal lines mark equilibrium shareholdings (the bottom line in odd periods of a sequence, the top line in even periods). Recall that equilibrium shareholdings follow a perfect two-cycle, increasing in high income periods and decreasing in low income periods. As Figure 2 indicates, a two-cycle pattern (in sign) is precisely what occurred in each and every period on a per capita basis.¹⁶

Pooling across all concave sessions, type 1 subjects (on net) bought an average of 1.94 shares in odd periods (when they had high endowments of francs) and sold an average of 1.75 shares in even periods (when they had low endowments of francs). By contrast, in the linear sessions, type 1 subjects bought an average of only 0.53 shares in odd periods and sold an average of 0.25 shares in even periods. Thus, while there was a modest degree of consumption-smoothing that took place in the linear sessions (on a per capita basis, type 1 subjects bought shares in odd periods in all ten sessions on average, and sold shares in even periods in seven of ten sessions on average), the much greater change in mean share position by type in the concave sessions (nearly four times as large) indicates that it was the concavity of induced utility that mattered most for the consumption-smoothing observed in Figure 2, and not the cyclic income process alone.

We can also confirm a strong degree of consumption-smoothing across individuals. Consider the proportion of periods a subject smoothes consumption; that is, the proportion of

¹⁵Thus there are two allocations associated with each vertical line except the final one: the final shareholdings of the sequence, and the re-initialized asset endowment of the following sequence (always one unit).

¹⁶In these graphs, the period numbers shown are aggregated over all sequences played. From a subject's perspective, each sequence started with period 1.

periods that a type 1 (2) subject buys (sells) shares if the period is odd, and sells (buys) shares if the period is even. Figure 3 displays the cumulative distribution across subjects of this proportion, pooled by whether the session had linear or concave induced utility functions. Half of the subjects in the concave sessions smoothed consumption in more than

80% of all trading periods while less than 2% of subjects in the linear sessions smoothed consumption so frequently. Well over 90% of the subjects in the concave sessions smoothed consumption in at least half of the periods, whereas only 35% of the subjects in the linear sessions smoothed consumption that frequently. We note that the comparative absence of consumption smoothing in the linear sessions is not indicative of anti-consumption smoothing behavior. Rather, it results from the fact that many subjects in the linear treatment did not actively trade shares in many periods. It is clear from the figure that subjects in the concave sessions were actively trading in most periods, and had a strong tendency to smooth their consumption.

As noted in the introduction, the experimental evidence on whether subjects can learn to smooth consumption in an optimal manner (without tradable assets) has not been encouraging; by contrast, in our design where subjects must engage in trade in the asset in order to implement the optimal consumption plan and can observe transaction prices, consumptionsmoothing seems to come rather naturally to most subjects.

4.2 Findings for induced linear utility

Finding 3 In the linear induced utility sessions ($\phi^i = 1$) trade in the asset did occur, at volumes similar to those observed in the concave sessions. Normalized transaction prices in the linear utility sessions are significantly higher than prices in the concave utility sessions.

Figure 4 displays median transaction prices by period for the linear sessions, $\bar{d} = 2$ is on the left and $\bar{d} = 3$ is on the right. As with Figure 1, solid dots represent the first period of a new indefinite trading sequence and prices have been transformed into percentage deviations from the predicted equilibrium price.

Figure 4: Equilibrium-normalized Prices, Linear Sessions

Table 3 displays the median transaction price over several frequencies at the individual session level, and an average of these median prices at the treatment level. Notice that for a given dividend value \bar{d} , the average treatment price at each frequency is higher in the linear case than the corresponding concave case. Further, the price difference between linear and concave treatments involving the same \bar{d} value is generally diverging over time; in moving from the median price over all periods, to the median second-half price, to the median price in the final five periods, to the median price in the final period, the average treatment price is monotonically *decreasing* in the concave treatments and monotonically *increasing* in the linear treatments. To see evidence of these trends at the session level we calculate the Mann-Kendall τ statistic, a non-parametric measure of monotonic trend, for each session. The support of the τ statistic is the [-1, 1] interval, where $\tau = -1$ indicates a strictly monotonic negative trend, $\tau = 1$ indicates a strictly monotonic positive trend, and $\tau = 0$ indicates no trend. The results of the test are presented in Table 3, where we observe that five of the ten linear sessions have a positive trend at the 5% level of significance while

	Median	First Pd	Final Half	Final 5 Pds	Final Pd	au	p-value
C2-Mean	9.6	10.9	9.4	9.0	8.3		
S 1	7	15	6	5	6	-0.67	0.0002
S 6	9	10	9	9	10	0	1
S 9	14	8.5	15	14	10	0.02	0.9592
$\mathbf{S15}$	7	8	7	7	7	-0.39	0.0132
S19	11	13	10	10	8.5	-0.80	< 0.0001
L2-Mean	14.2	13.0	15.0	15.0	15.6		
$\mathbf{S3}$	13	13	13	13	13	-0.32	0.0609
$\mathbf{S5}$	10	10	10	10	11	-0.06	0.8248
S10	18	18	20	20	20	0.63	0.0027
S16	18	13	20	20	22	0.81	< 0.0001
S20	12	11	12	12	12	0.27	0.1946
C3-Mean	10.8	8.4	10.8	10.6	10.4		
$\mathbf{S2}$	7	7	7	7	8	0.15	0.5174
S 8	15	9	17	17	16	0.70	0.0010
S11	10	10	8	7	6	-0.78	< 0.0001
$\mathbf{S14}$	13	11	13	13	13	-0.13	0.5698
S17	9	5	9	9	9	0.28	0.1551
L3-Mean	13.8	9.4	15.0	15.4	16.0		
$\mathbf{S4}$	10	6	11	12	13	0.72	0.0002
S7	13	10.5	13	13	13	0.33	0.1282
$\mathbf{S12}$	10	11.5	10	10	10	-0.46	0.0228
S13	16	7	17	16	17	0.41	0.0356
S18	20	12	24	26	27	0.95	< 0.0001

Table 3: Median Transaction Prices By Session and Treatment

only one has a negative trend, and four of ten concave sessions have a negative trend while only one has a positive trend. Thus nearly half of the twenty sessions are diverging in prices from each other by induced utility, while only 10% are changing in the opposite direction.

This evidence suggests that price differences between the concave and linear sessions would likely have been even greater if our experimental sessions had involved more periods of play. For this reason, we choose to look for treatment differences in median prices during the final period of each session. Another justification for our focus on final period prices is that in a relatively complicated market experiment such as this one there is the potential for significant learning over time; prices in the final period of each session reflect the actions of subjects who are the most experienced with the trading institution, realizations of the continuation probability, and the behavior of other subjects. Final period prices thus best reflect learning and long-term trends in these markets.

Pooling the two dividend conditions for a given induced utility condition, we observe that the median price in the final period of the linear sessions was 32% above the fundamental price on average, while in the concave sessions this average median price was 24% below the fundamental price. The associated Wilcoxon rank-sum test p-value is 0.006, strongly rejecting the null hypothesis that equilibrium-normalized final period prices in the pooled linear sessions were drawn from the same distribution as the concave sessions. We justify pooling the dividend conditions based on the fact that the distributions of final period prices in C2 vs. C3 and L2 vs. L3 are not statistically significant at the 5% level (p-values of 0.462 and 0.094, respectively).¹⁷

Thus the evidence is strong that the difference in induced preferences caused a strong impact on prices by the end of the session; prices were considerably greater than the fundamental value in the linear sessions, and considerably below in the concave sessions. We are presented with a bit of a puzzle with respect to where prices initialized. It is clear from Figures 1 and 4 that relative to the fundamental price, each session in C3 initialized at a first-period price below each session in C2, and each session in L3 initialized at a first-period price below each session in L2, which alone might be attributed to a tighter budget constraint for higher dividends. More puzzling, we also observe that on average, non-normalized prices were also higher for $\bar{d} = 2$ than $\bar{d} = 3$ (pooling by dividend across induced utility conditions, we reject the null hypothesis that the non-normalized median first-period prices in the $\bar{d} = 2$ sessions come from the same distribution as the prices in the $\bar{d} = 3$ sessions; the associated Wilcoxon rank-sum p-value is 0.049). Thus dividend had an unexpectedly negative (though relatively small) impact on prices in the first period, while the induced utility condition in the first period had no impact (pooled p-value of 0.240). Whereas by the end of the session, average non-normalized prices were higher for $\bar{d} = 3$ than $\bar{d} = 2$ for a given induced utility condition (though not statistically significant), and it was the induced utility condition itself which was the main driver of price differences.

Finding 4 In the linear utility treatment, the asset was "hoarded" by just a few subjects.

In the linear treatment subjects have no induced motivation to smooth consumption, and thus no induced reason to trade at p^* under the assumption of risk neutrality. However,

 $^{^{17}}$ In treatment-to-treatment comparisons, the difference in the distribution of final period prices is significantly different between L2 and C2 (p-value is 0.012) but not between L3 and C3 (p-value is 0.139). Average differences are quite large in both cases.

Figure 5: Distribution (by Treatment) of Mean Shareholdings During the Final Two Periods

we nevertheless observe substantial trade in these linear sessions, with close to half of the subjects selling nearly all of their shares, and a small number of subjects accumulating most of the shares. Figure 5 displays the cumulative distribution of mean individual shareholdings during the final two periods of the final sequence of each session, aggregated according to whether the treatment induced a linear or concave utility function.¹⁸ We average across the final two periods due to the consumption-smoothing identified in Finding 3; use of final period data would bias upward the shareholdings of subjects in the concave sessions. We consider the final two periods rather than averaging shares over the final sequence or over the entire session because it can take several periods within a sequence for a subject to achieve a targeted position due to the budget constraint. Forty-two percent of subjects in the linear sessions held an average of 0.5 shares or less during the final two periods. By contrast, just 8% of subjects in the concave sessions held so few shares during the final two periods. At the other extreme, 17% of subjects in the linear sessions held an average of at least 6 shares during the final two periods, while only 6% of subjects in the concave sessions held so many shares. Thus subjects in the linear sessions were six times more likely to hold 'few' (< 1) shares and three times more likely to hold 'many' (≥ 6) shares as were subjects

 $^{^{18}}$ We use the final sequence with a duration of at least two periods.

in the concave sessions, while subjects in the concave sessions were more than twice as likely to hold an intermediate quantity (between 1 and 6) of shares (86% vs. 41%).

A useful summary statistic for the distribution of shares is the Gini coefficient, a measure of inequality that is equal to zero when each subject holds an identical quantity of shares and is equal to one when one subject owns all shares. Under autarky, where subjects hold their initial endowments (type 1 subjects hold 1 share, type 2 subjects hold 4 shares), the Gini coefficient is 0.3. In the consumption-smoothing equilibrium of the concave utility treatment, the Gini coefficient when $\bar{d} = 2$ (treatment C2) is the same as under autarky: 0.3. When $\bar{d} = 3$ (treatment C3), the Gini coefficient (over two periods) is slightly lower at 0.25. We find that the mean Gini coefficient for mean shareholdings in the final two periods of all concave sessions is 0.37. By contrast, the mean Gini coefficient for mean shareholdings in the final two periods of all linear sessions is significantly larger, at 0.64; (Mann-Whitney test, p-value 0.0002). This difference largely reflects the hoarding of a large number of shares by just a few subjects in the linear treatment, behavior that was absent in the concave treatment sessions.¹⁹

We next turn to the impact of innate risk preferences on behavior in our experiment.

Finding 5 More risk tolerant subjects (as identified through the Holt-Laury paired lottery choice task) typically held more shares of the asset in the linear, but not in the concave treatment sessions.

After running the first six sessions of this experiment it became apparent to us that the "indigenous" (home-grown) risk preferences of subjects might be a substantial influence on asset prices and the distribution of shareholdings, particularly in the linear sessions. Thus beginning with our seventh experimental session we asked subjects to participate in a second experiment involving the Holt and Laury (2002) paired lottery choice instrument. This second experiment occurred *after* the asset market experiment had concluded and was *not* announced in advance to minimize any influence on decisions in the asset market experiment. In this second experiment subjects faced a series of ten choices between two lotteries, A and B, each paying either a low or high payoff. Lottery A had a low variance between payoffs

¹⁹Indeed, an interesting regularity is that exactly two of twelve (16.67%) subjects in each of the ten linear sessions held an average of at least 6 shares of the asset during the final two trading periods (recall there are only 30 shares of the asset in total in each session of our design). Thus the subjects identified in the right tail of the distribution in Figure 5 were divided up evenly across the ten linear sessions. The actual proportion of shares held by the two largest shareholders during the final two periods averaged 63% across all linear sessions, compared with just 39% across all concave sessions. Applying the Mann-Whitney rank sum test, the distribution of shares held by the largest two shareholders in the linear sessions is significantly larger than the same distribution found in the concave sessions (p-value < 0.0001).

while lottery B had a high variance.²⁰ For choice $n \in \{1, 2, ...10\}$, the probability of getting the high payoff in the chosen lottery was (0.1)n. For each subject one of the ten choices was selected at random. Then the corresponding lottery was played (with computer-generated probabilities) and the subject paid according to the outcome. As detailed in Holt and Laury, a risk-neutral expected utility maximizer should choose the high-variance lottery B six times. We refer to a subject's *HL score* as the number of times a subject selected the high variance lottery, B. HL scores lower than 6 indicate risk-aversion with regard to uncertain monetary payoffs while scores greater than 6 indicate risk loving preferences. The mean HL score from our sessions was 3.9. Roughly 17% of our subjects had an HL score of at least 6, and 30% had a score of at least 5, indicating a fairly typical distribution of choices for lotteries of this scale.

Pooling dividends and comparing linear versus concave induced utility, we conducted a random effects regression of average subject shareholdings during the final two periods of each session on the subject's HL score for that session. We chose a random effects specification with the experimental session as the random factor as there is session-level heterogeneity in the distribution of risk preferences (e.g., a subject with a HL score of 6 might be the most risk-tolerant subject in one session but only the third most risk-tolerant subject in another session). In the linear case, the estimated coefficient on the HL score variable was 0.54 and its associated p-value was 0.005 (the full regression results are presented in Table A-1 of Appendix A). Thus the model predicts that for every two additional high-variance choices in the lottery choice experiment, a subject will hold more than one additional share of the asset by the end of the period. This is a huge impact, as there are only 2.5 shares per capita in these economies. On the other hand, in the concave case the estimated coefficient on the HL score is -0.159 with an associated p-value of 0.191 (full results are reported in Table A-2 of Appendix A).²¹ Thus we find that the HL score is a useful predictor of final shareholdings only in the linear sessions: The more risk-tolerant a subject was relative to his session cohort, the more shares he tended to own by the end of a linear-treatment session.

5 Conclusion

Our aim in this paper was to demonstrate how one could implement and test some of the comparative static predictions of consumption-based asset pricing models in the controlled

²⁰The high and low payments for lottery A were \$6 and \$4.80, respectively, and those for lottery B were \$11.55 and \$0.30. These were the payments used in the baseline Holt and Laury treatment but scaled up by a multiple of 3, so that the stakes in our paired-choice lottery were similar to expected equilibrium payments for a sequence of our market experiment.

²¹The estimated coefficients and p-values in these regressions are nearly identical to those in the analogous fixed effects regressions.

conditions of the laboratory. As we noted in the introduction, the laboratory allows for more careful control over the environment and data measurement than is possible using field data, and we think that laboratory experiments should at least complement analyses of asset pricing behavior using field data. An additional aim was to build a bridge between the experimental asset pricing literature which has typically followed the SSW experimental design and the equilibrium asset pricing models used by macroeconomic/business cycle and finance researchers which are mainly consumption-based. To date there has been little communication between researchers in these two literatures. Our work integrating methods and models from both fields will enable both literatures to speak to a broader audience.

In our concave treatments, which implement a version of Lucas's (1978) consumptionbased asset pricing model, we found that the theory generally performs well. Prices of the asset lie at or below the equilibrium predicted level and increase with increases in the dividend, that is, they respond to changes in economic fundamentals. Most significantly, there is strong evidence that, consistent with the theory, subjects are using the asset to intertemporally smooth their consumption by buying the asset in periods in which they have high incomes and selling the asset in periods in which they have low income.

In our linear treatments which are closer to the SSW design in the sense that there is no motive for subjects to use the asset to smooth consumption or to engage in any trade in the asset whatsoever, we find that asset prices are considerably higher than in the comparable concave treatment sessions. If we loosely define a bubble as a sustained deviation of asset prices above the fundamental price, one-half of our linear treatment economies experienced bubbles, and in three of those four sessions the bubble exhibited no signs of collapse. Indeed, in two of these sessions the median price of the asset towards the end of the experiment was more than double the fundamental price and was continuing to rise. By contrast, when consumption-smoothing was induced in an otherwise identical economy as in our concave treatments, prices bubbled in only one-fourth of sessions, and in these sessions the median price of the asset collapsed to the fundamental price by the (random) end of the experimental session. Thus, price bubbles were less frequent, of lower magnitude, and of shorter duration when we induced a consumption-smoothing motive in an otherwise identical economy. In fact, prices were nearly 25% below the fundamental price on average in the concave treatment sessions; subjects could hold the asset at a premium (in expected value) relative to its sale price.

Our results may offer some preliminary guidance as to which naturally occurring markets are more prone to experience large asset price bubbles. We might reasonably expect that markets with a high concentration of speculators, focused primarily on capital gains derived from expected price movements, are the most likely to bubble, while markets with a large number of participants who trade at least in part for lifecycle consumption-smoothing purposes (e.g. to save for retirement) are less likely to bubble. Of course, in our current design we do not have subjects with both linear and concave induced utility functions so at this juncture we merely offer the possibility that laboratory experiments could provide the basis for such a characterization in the future.

Our experimental design can be extended in at least three distinct directions. First, the design can be moved a step closer to the environments used in the macrofinance literature; specifically, by adding a Markov process for dividends and/or a known, constant growth rate in endowment income. The purpose of such treatments would be to explore the robustness of our present findings in the deterministic setting to stochastic or growing environments. A further step would be to induce consumption-smoothing through overlapping generations rather than via a cyclic income process and a concave exchange rate.

In another direction, it would be useful to clarify the impact of features of our experimental design relative to the much-studied experimental design of Smith, Suchanek, and Williams (1988). For example, one could study a finite horizon, linear (induced) utility design as in SSW, but where there exists a constant probability of firm bankruptcy as in our present design. Would the interaction of a finite horizon but the possibility of firm bankruptcy inhibit bubbles relative to the SSW design, or is an induced economic incentive to trade assets necessary to prevent a small group of speculators from effectively setting asset prices across a broad range of economies?

Finally, it would be useful to design an experiment to rigorously test for within-session risk preferences and wealth effects. In our present design we observe little evidence that riskaverse subjects (those with low Holt-Laury scores) attempt to increase their shareholdings over time in the linear induced utility treatment in sessions where prices are relatively low, a contradiction of time-consistent rational risk-aversion. This result is perhaps not surprising; if subjects exhibit a different degree of risk aversion in small stakes laboratory gambles than they apply to 'large' economic decisions (i.e., Rabin's (2000) critique), then perhaps it should be expected that they exhibit myopic risk aversion over a sequence of small stake gambles rather than maximize expected utility globally over a sequence. To our knowledge this hypothesis has not been directly tested. In fact, most laboratory studies of risk preferences quite consciously and explicitly eliminate the possibility of laboratory wealth effects on subject behavior.

We leave these extensions and additional experimental designs to future research.

References

- Asparouhova, Elena, Peter Bossaerts, and Charles R. Plott (2003), "Excess Demand and Equilibration in Multi-Security Financial Markets: The Empirical Evidence," *Journal* of Financial Markets 6, 1-21.
- Asparouhova, Elena, Peter Bossaerts, Nilanjan Roy and William Zame (2011) "Experiments With the Lucas Asset Pricing Model," working paper, University of Utah.
- Ballinger, T. Parker, Michael G. Palumbo and Nathanial T. Wilcox (2003), "Precautionary Savings and Social Learning Across Generations: An Experiment," *Economic Journal* 113, 920-947.
- Bossaerts, Peter and Charles R. Plott (2002), "The CAPM in Thin Experimental Financial Markets," Journal of Economic Dynamics and Control 26, 1093-1112.
- Bossaerts, Peter Charles R. Plott and William R. Zame (2007), "Prices and Portfolio Choices in Financial Markets: Theory, Econometrics, Experiments," *Econometrica* 75, 993-1038.
- Breeden, Douglas T. (1979), "An Intertemporal Asset Pricing Model with Stochastic Consumption and Investment Opportunities," *Journal of Financial Economics* 7, 265–296.
- Camerer, Colin and Keith Weigelt (1993), "Convergence in Experimental Double Auctions for Stochastically Lived Assets," in D. Friedman and J. Rust, Eds., The Double Auction Market: Institutions, Theories and Evidence Cambridge, MA: Perseus Publishing, 355-396.
- Carbone, Enrica and John D. Hey (2004), "The Effect of Unemployment on Consumption: An Experimental Analysis," *Economic Journal* 114, 660-683.
- Cochrane, John H. (2005), Asset Pricing, Revised Edition. Princeton: Princeton University Press.
- Dal Bó, Pedro, and Guillaume R. Fréchette, "The Evolution of Cooperation in Infinitely Repeated Games: Experimental Evidence," *American Economic Review* 101, 411-429.
- Dufwenberg, Martin, Tobias Lindqvist, and Evan Moore (2005), "Bubbles and Experience: An Experiment," *American Economic Review* 95, 1731-37.
- Fischbacher, Urs (2007), "z-Tree: Zurich Toolbox for Ready-Made Economic Experiments," Experimental Economics 10, 171-178.

- Forsythe, Robert, Thomas Palfrey and Charles R. Plott (1982), "Asset Valuation in an Experimental Market," *Econometrica* 50, 537-567.
- Friedman, Daniel, Glenn Harrison and Jon Salmon (1984), "The Informational Efficiency of Experimental Asset Markets," *Journal of Political Economy* 92, 349-408.
- Hansen, Lars P., and Kenneth J. Singleton (1983), "Stochastic Consumption, Risk Aversion and the Temporal Behavior of Asset Returns," *Journal of Political Economy* 91, 249-265.
- Harrison, Glenn W., Morten I. Lau, Elisabet E. Rutstrom, and Melanie B. Sullivan, "Eliciting Risk and Time Preferences Using Field Experiments: Some Methodological Issues," in J. Carpenter, G.W. Harrison, and J.A. List (eds.), *Field Experiments in Economics* (Greenwich, CT: JAI Press, Research in Experimental Economics, Volume 10, 2005).
- Haruvy, Ernan, Yaron Lahav and Charles N. Noussair (2007), "Traders' Expectations in Asset Markets: Experimental Evidence," *American Economic Review*, 97, 1901-1920.
- Hey, John D. and Valentino Dardanoni (1988), "Optimal Consumption Under Uncertainty: An Experimental Investigation," *Economic Journal* 98, 105-116.
- Holt, Charles A., and Susan K. Laury (2002), "Risk Aversion and Incentive Effects in Lottery Choices," American Economic Review 92(5), 1644-1655.
- Holt, Charles A., and Susan K. Laury (2005), "Risk Aversion and Incentive Effects: New Data Without Order Effects," *American Economic Review* 95(3), 902-912.
- Hussam, Reshmaan N., David Porter, and Vernon L. Smith "Thar She Blows: Can Bubbles be Rekindled with Experienced Subjects?," *American Economic Review* 98(3), 924-937.
- Kocherlakota, Narayana R. (1996), "The Equity Premium: It's Still a Puzzle," Journal of Economic Literature 34, 42-71.
- Lei, Vivian, Charles N. Noussair and Charles R. Plott (2001), "Nonspeculative Bubbles in Experimental Asset Markets: Lack of Common Knowledge of Rationality vs. Actual Irrationality," *Econometrica* 69, 831–59.
- Lengwiler, Yvan (2004), Microfoundations of Financial Economics, Princeton: Princeton University Press.
- LeRoy, Stephen F. and Richard D. Porter (1981), "The Present Value Relation: Tests Based on Implied Variance Bounds," *Econometrica*, 49, 555—574.

- Lucas, Robert E. Jr., (1978), "Asset Prices in an Exchange Economy," *Econometrica* 46, 1429–1445.
- Lugovskyy, Volodymyr, Daniela Puzzello, and Steven Tucker (2010), "An Experimental Study of Bubble Formation in Asset Markets using the Tâtonnement Pricing Mechanism," mimeo.
- Mankiw, N. Gregory and Stephen P. Zeldes, (1991), "The Consumption of Stockholders and Nonstockholders," *Journal of Financial Economics*, 29, 97-112.
- Noussair, Charles N. and Kenneth J. Matheny (2000), "An Experimental Study of Decisions in Dynamic Optimization Problems," *Economic Theory* 15, 389-419
- Plott, Charles R. and Vernon L. Smith (2008), Eds., Handbook of Experimental Economic Results Vol.1, Amsterdam: North Holland.
- Plott, Charles R. and S. Sunder (1982), "Efficiency of Experimental Security Markets with Insider Trading," Journal of Political Economy 90, 663-698.
- Porter, David P. and Vernon L. Smith (1995), "Futures Contracting and Dividend Uncertainty in Experimental Asset Markets," *Journal of Business* 68, 509-541.
- Rabin, Matthew (2000), "Diminishing Marginal Utility of Wealth Cannot Explain Risk Aversion," in Choices, Values, and Frames, edited by Daniel Kahneman and Amos Tversky, New York: Cambridge University Press, 202-208.
- Roth, Alvin and J. Keith Murnighan (1978), "Equilibrium Behavior and Repeated Play of the Prisoners' Dilemma," *Journal of Mathematical Psychology*, 17, 189-198.
- Sherstyuk, Katerina, Nori Tarui, and Tatsuyoshi Saijo (2013), "Payment Schemes in Infinite-Horizon Experimental Games," *Experimental Economics*, 16, 125-153.
- Shiller, Robert J. (1981), "Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?," American Economic Review, 71, 421—436.
- Smith, Vernon L. (1962), "An Experimental Study of Competitive Market Behavior," Journal of Political Economy 70, 111-137.
- Smith, Vernon L., Gerry L. Suchanek, and Arlington W. Williams (1988), "Bubbles, Crashes and Endogenous Expectations in Experimental Spot Asset Markets," *Econometrica* 56, 1119-51.
- Sprenger, Charles (2011), "An Endowment Effect for Risk: Experimental Tests of Stochastic Reference Points," Working Paper.

- Stiglitz, Joseph E. (1970), "A Consumption-Oriented Theory of the Demand for Financial Assets and the Term Structure of Interest Rates," *Review of Economic Studies* 37, 321-351.
- Wheatley, S. (1988), "Some Tests of the Consumption-Based Asset Pricing Model," Journal of Monetary Economics 22, 193—215.

Appendix A: Regression Results

Table A-1: R.E. Regression of Final Shareholdings on HL Scores, Linear Sessions

```
s_{ij} = \beta_0 + \beta_1 h_{ij} + u_j + \varepsilon_{ij}
```

 $s_{ij}=\mbox{average}$ shares of subject i during the final 2 periods of linear session j

 $h_{ij} = \text{HL}$ score of subject *i* in linear session *j*

Random	-effects GLS	S regression	Nun	nber of ol	bs = 60				
Group v	ariable (i):	session	Nun	nber of gi	coups = 5				
R^2 : with	$\sin = 0.0000$)	Obs	per grou	p: min = 12				
betw	between $= 0.0000$			avg = 12.0					
overall = 0.0723				$\max = 12$					
Random	Guassian	Wale	Wald $\chi^2(1) = 4.52$						
$\operatorname{corr}(u_j, h_j) = 0 \text{ (assumed)}$			Prob	$\text{Prob} > \chi^2 = 0.0335$					
s_{ij}	Coef.	Std. Err.	z	P > z	[95% Confidence Interval]				
β_1	0.4579467	0.2153831	2.13	0.033	[0.0358035, 0.8800899]				
β_0	0.5613589	1.001782	0.56	0.575	[-1.402099, 2.524816]				
sigma_u	0								
sigma_e	3.3157167								
rho	0 (fraction	of variance	due t	o $u_j)$					

Table A-2: R.E. Regression of Final Shareholdings on HL Scores, Concave Sessions

 $s_{ij} = \beta_0 + \beta_1 h_{ij} + u_j + \varepsilon_{ij}$

 s_{ij} = average shares of subject *i* during the final 2 periods of concave session *j*

Random	-effects GLS	regression	Num	ber of ob	s = 60				
Group v	ariable (i): s	session	Num	Number of groups $= 5$					
R^2 : with	$\sin = 0.0000$		Obs 1	Obs per group: $\min = 12$					
betw	between $= 0.0000$			avg = 12.0					
overall = 0.0117				$\max = 12$					
Random effect $u_j \sim \text{Guassian}$			Wald	Wald $\chi^2(1) = 0.69$					
$\operatorname{corr}(u_j, h_j) = 0 \text{ (assumed)}$			Prob	$Prob > \chi^2 = 0.4074$					
s_{ij}	Coef.	Std. Err.	z	P > z	[95% Confidence Interval]				
β_1	-0.0969082	0.1169705	-0.83	0.407	$[0.3261662, \ 0.1323499]$				
β_0	2.847254	0.4656838	6.11	0.000	$[1.934531,\ 3.759978]$				
sigma_u	0								
sigma_e	1.6286249								
rho	0 (fraction	of variance	due to	(u_j)					

7	TTT	c		•		•	
h =	HL score	ot	subject i	1n	concave	session	1
$n_{ij} =$	1112 00010	OI	. Bubjece i	111	concave	00001011	.)

Table A-3: Linear Regression of Median First Period Prices on Mean HL Scores $p_j = \beta_0 + \beta_1 h_i + \beta_2 (h_j^2 - h_j)^2 + \varepsilon_j$

 $p_j = \text{median period 1 price in session } j$

 h_j = mean HL score (i.e., number of high variance choices) in session j

 $h_i^2 = \text{mean HL score for type 2 subjects in session } j$

Source	SS	df	Model	Number of $obs = 10$					
Model	86.002833	2	43.0014165	F(2,7) = 119.35					
Residual	2.52216695	7	0.360309565	Prob > F = 0.0000					
Total	88.525	9	9.83611111	$R^2 = 0.9715$					
				Adjusted $R^2 = 0.9634$					
				Root $MSE = 0.60026$					
p_j	Coef.	Std. Err.	t	P > t	[95% Confidence Interval]				
β_1	3.60597	0.3221715	11.19	0.000	[2.844155, 4.367784]				
β_2	11.18167	1.446256	7.73	0.000	[7.761817, 14.60152]				
β_0	-4.786654	1.244665	-3.85	0.006	[-7.72982, -1.843489]				

Table A-4: Quadratic Regression, Net E.V. Positions on HL Scores, Concave Sessions $\nu_{ij} = \beta_0 + \beta_1 h_{ij} + \beta_2 h_{ij}^2 + u_j + \varepsilon_{ij}$

 ν_{ij} = mean net expected value trading position of subject i in concave session j

Source	SS	df	Model	Numbe	Number of $obs = 60$						
Model	.831903717	2	.415951859	F(2,57)) = 2.06						
Residual	11.4957808	57	.201680364	Prob > F = 0.1365							
Total	12.3276845	59	.208943805	$R^2 = 0.0675$							
		-		Adjusted $R^2 = 0.0348$							
				Root MSE = 0.44909							
$ u_{ij}$	Coef.	Std. Err.	t	P > t	[95% Confidence Interval]						
β_1	.219287	.1081382	2.03	0.047	[.002744, .4358299]						
β_2	0227729	.0115985	-1.96	0.054 [0459984, .0004527]							
β_0	.1047916	.2276237	0.46	0.647	[351017, .5606003]						

 $h_{ij} = \text{HL}$ score of subject *i* in concave session *j*

Table A-5: Quadratic Regression, Net E.V. Positions on HL Scores, Linear Sessions

 $\nu_{ij} = \beta_0 + \beta_1 h_{ij} + \beta_2 h_{ij}^2 + u_j + \varepsilon_{ij}$

 ν_{ij} = mean net expected value trading position of subject *i* in concave session *j*

Source	SS	df	Model	Numbe	Number of $obs = 60$						
Model	.000889999	2	.000444999	F(2,57)	F(2,57) = 0.79						
Residual	.032005762	57	.000561505	Prob > F = 0.4576							
Total	.032895761	59	.000557555	$R^2 = 0.0271$							
		•	•	Adjusted $R^2 = -0.0071$							
				Root $MSE = .0237$							
$ u_{ij}$	Coef.	Std. Err.	t	P > t	[95% Confidence Interval]						
β_1	.006825	0054248	1.26	0.213	[0040379, .0176878]						
β_2	000589	.0004937	-1.19	0.238 [0015775, .0003996]							
β_0	015603	0136212	-1.15	0.257	[0428791, .0116731]						

 $h_{ij} = \text{HL score of subject } i \text{ in linear session } j$

Appendix B. Indigenous (homegrown) risk preferences (for online publication)

Their HL scores indicate that a majority of subjects in our experiment are risk averse, in contrast with our theoretical assumption of risk-neutral expected utility maximizers. Here we address the extent to which the model's predictions are altered by the presence of individuals with indigenous risk aversion.

We must first attend to initial wealth m_0 as introduced in Section 2.2, since this term enters decision-making through equation (6). One view of m_0 is that it corresponds to the (unobserved) wealth of individual subjects at the start of the experiment. However, as Rabin (2000) points out, it is difficult to rationalize risk aversion over the small stakes of our experiment given the likely wealth levels that subjects have at the start of the experiment. A second view of m_0 is that it corresponds to the wealth accumulated in the experiment up to the point of the current decision (e.g., the promised show-up payment of \$5 plus earnings in all prior periods of the experiment). A third (more myopic) view is that m_0 is re-initialized to \$0 at the start of every new indefinite sequence of periods. Finally, the most extreme myopic assumption is that m_0 is reset to \$0 at the start of each period.

From Rabin's critique we can rule out that most indigenously risk averse agents set m_0 equal to their actual wealth. Therefore we will consider the last three assumptions in our analysis of the effect of initial wealth on optimization by indigenously risk-averse agents. For simplicity we assume that prices are expected with certainty to remain constant at some level, p, which greatly simplifies our analysis and allows us to use the Euler equation (6) as our starting point.

Behavior in the Linear Treatments

We begin with the case where induced utility is linear (that is, treatments L2 and L3), so that $u(c) = \alpha c$. Recall that M_t is cumulative dollar earnings through period t, and v(m) is the subject's indigenous utility from m dollars, which we assume to be strictly concave (i.e., risk-averse) throughout this section. Then, by equation (6), prices can be constant only if $v'(M_{t+1}) = kv'(M_t)$ for all t, where $k \in (0, 1)$ is a constant rate of decay of marginal utility. Thus (6) reduces to

$$p = \frac{k\beta}{1 - k\beta}\bar{d}.$$
(9)

Suppose subjects' indigenous utility is characterized by the CRRA function $v(m) = \frac{1}{1-\gamma}m^{1-\gamma}$,

where $\gamma > 0$. Then $k = \left(\frac{M_t}{M_{t+1}}\right)^{\gamma}$. Substituting this expression into (9) and applying some algebra, we obtain the condition $M_{t+1} = gM_t$, where $g = \left[\frac{(\bar{d}+p)\beta}{p}\right]^{\frac{1}{\gamma}}$ is the optimal growth rate of wealth for period t > 1.

If the prevailing price $p \ge p^*$ then $g \le 1$, so the subject would prefer for consumption to be zero after the first period. Since short sales are not allowed, a risk-averse subject adopts the corner solution in which he sells all of his shares of the asset in the first period (or as soon as possible) and simply consumes his endowment income in subsequent periods. The behavior of many subjects was close to this prediction in the L2 treatment (in particular, about half of the subjects held fewer than one share of the asset per period), where prices were often above p^* .

If the prevailing price $p < p^*$ we have g > 1, so a risk-averse subject prefers that his wealth grows over time at a constant rate. This growth rate is decreasing in the risk-aversion of the subject and price. Thus a more risk-averse subject facing higher prices prefers more of his earnings earlier in the sequence and accumulates wealth at a slower rate. For all $\gamma > 0$ (that is, for all risk-averse subjects) wealth eventually explodes as the curvature of the subject's indigenous utility function becomes approximately linear at "high" levels of consumption; that is, the subject behaves approximately like a risk-neutral agent once he's accumulated sufficient wealth (and would prefer to borrow assets at the current price if he were allowed to borrow). Note that it is not possible for all subjects to behave as expected utility maximizers at a constant price below p^* because aggregate income in the experiment is constant in each period. Eventually demand would outpace supply, causing prices to rise up toward p^* .

An important question is how quickly should we expect excess demand (and thus prices) to rise in our experiment due to this wealth effect? Let's focus first on the L3 treatment, where p = 10 was a commonly observed and fairly stable price in 2 of our 4 sessions ($p^* = 15$ in the L3 treatment so we have $p < p^*$). Consider the behavior of a subject with $\gamma = 0.5$ (the mean degree of risk-aversion implied by our distribution of HL scores). Suppose this subject believes that prices will continue to be 10 and further considers initial wealth m_0 to be his show-up fee, \$5. The upper-left panel of Figure 6 displays the optimal shareholdings for type 1 and type 2 subjects under these assumptions, along with their excess demand. Desired shareholdings at the end of the first period are more than 12 for type 1 and more than 7 for type 2; thus excess demand for a pair of risk-averse subjects ($\gamma = .5$) will be *four* times their endowment of shares at the end of the first period alone! Thus the notion that subjects maximize utility given initial wealth earned in the experiment (just \$5) appears to be incompatible with the below-equilibrium prices observed in the two L3 sessions, at least under the assumption of constant prices.

Figure 6: Optimal Behavior Under Constant Price p = 10

Suppose next that $m_0 = \$0$ at the beginning of each new sequence (so that subjects attempt to maximize utility within each sequence independently). The upper-right panel of Figure 6 shows that our pair of opposite-type subjects with an average degree of risk aversion ($\gamma = .5$) will now have excess demand for shares that is nearly four times their share endowment by the fifth period. Even a pair of highly risk-averse subjects ($\gamma \rightarrow 1$, which is log utility) with $m_0 = \$0$ will have positive excess demand for shares by the eighth period (see the lower-left panel of Figure 6). Thus regardless of the value of m_0 and the degree of risk aversion, we should not have observed stable prices as far below p^* as we observed in some sessions of L3. Thus it seems unlikely that subjects in the L3 sessions were attempting to dynamically optimize expected utility when prices were consistently below p^* .

Finally suppose that risk-averse subjects ignore wealth effects entirely, even within a sequence, i.e., m_0 resets to \$0 at the start of every period. In that case the Euler equation (6) is no longer binding. Under that assumption, one can view the decision to hold an asset indefinitely as a compound lottery having an expected value of p^* francs. For a subject with $\gamma = 0.5$, the certainty equivalent of this compound lottery when $\bar{d} = 2$ is 6.9 francs, and is 10.4 francs when $\bar{d} = 3$.²² With this view of decision-making, it is easier to rationalize sales of assets at prices greater than or equal to these certainty equivalent values throughout

 $^{^{22}\}text{This}$ is the discounted expected utility of the dividend stream under the assumption of CRRA utility with $\gamma=0.5$

a session. Recall that prices in the L2 sessions averaged 10 or greater while prices in the L3 sessions averaged 10.3 or greater (see Table 3). Thus, a subject with a mean degree of indigenous risk aversion who ignores all wealth effects will prefer not to buy assets at the transaction prices that prevailed on average in all sessions of the linear treatment. Noting that nearly half of all subjects quickly sold all or nearly all of their asset shares in the linear sessions, it appears that the assumption of extreme myopia with regard to wealth can rationalize more of the data than can dynamic optimization of expected utility.

Behavior in the Concave Treatment

For the concave treatment, equation (6) is difficult to solve numerically for risk-averse agents.²³ Thus we will focus here on the out-of-equilibrium behavior of indigenous *risk-neutral* subjects in the concave induced utility treatment and make some inferences based on that analysis for the behavior of indigenously risk-averse subjects. In this case where agents are indigenously risk neutral, the marginal utility of indigenous wealth becomes constant in equation (6), so that the induced marginal rate of substitution over time becomes the only variable. Initial wealth levels don't matter in this case.

In the lower-right panel of Figure 6 we observe optimal shareholdings for a pair of opposite type subjects who are indigenously risk-neutral ($\gamma = 0$) and who face a constant price of $10 < p^* = 15$ (as in our C3 treatment). Desired shareholdings increase over time since $p < p^*$, but the optimal rate of increase is much slower than it is for moderately *risk-averse* subjects ($\gamma = 0.5$) at the same price of 10 (and same p^*) when induced preferences are linear (compare with the top two panels of Figure 6 and not the change in the scale on the vertical axis). Thus while the risk-neutral steady state equilibrium prices of analogous linear and concave economies are the same, optimal behavior out of equilibrium is distinctly different in the two cases. From Figure 6 we observe that in the L3 treatment, rationally risk-averse subjects facing a below-equilibrium price may spend early periods at a constrained outcome where they wish only to buy or sell assets. The transition from the constrained outcome where the subject is a seller to one where he is a buyer happens very quickly, as can be readily inferred from the first three panels of Figure 6 when coupled with the fact that the aggregate endowment was fixed at only 5 shares per pair of subjects. This knife-edge feature of induced linear preferences also applies to the behavioral strategy introduced above, where wealth effects within the sequence are ignored entirely.

²³This is due to the interaction of the infinite sum of discounted, indigenous marginal utilities of wealth and the induced marginal rate of substitution. To our knowledge this is a novel dynamic programming problem.

On the other hand, for concave induced preferences, consumption-smoothing remains a strong feature of optimal behavior even out of equilibrium. This is apparent for the risk-neutral agents represented in the lower-right panel of Figure 6, and we conjecture that this will also hold true for indigenously risk-averse agents, who presumably should seek to increase their shareholdings at an even slower rate. Intuitively, the excess demand of a pair of indigenously risk-averse agents should be bounded from above by the excess demand of a pair of indigenously risk-neutral agents as depicted in the lower right panel of Figure 6.

Appendix C: Instructions Used in the Experiment (for online publication)

The instructions distributed to subjects in the C2 treatment are reproduced on the following pages. Subjects in the C3 treatment received identical instructions, except that dividends were changed from 2 to 3 throughout. Subjects in the L2 and L3 treatments received identical instructions to their counterparts in C2 and C3, respectively, except for the fourth paragraph. The modified fourth paragraph in the instructions for the L2 and L3 treatments is reproduced at the end of the C2 treatment instructions.

Following these instructions we present a reproduction of the endowment sheets, payoff tables, and payoff charts for all subjects. After these supplements we present the instructions distributed to all subjects for the Holt-Laury paired-choice lottery. A complete set of all instructions used in all treatments of this experiment can be found at http://www.socsci.uci.edu/~duffy/assetpricing/.

Experimental Instructions

I. Overview

This is an experiment in the economics of decision making. If you follow the instructions carefully and make good decisions you may earn a considerable amount of money that will be paid to you in cash at the end of this session. Please do not talk with others for the duration of the experiment. If you have a question please raise your hand and one of the experimenters will answer your question in private.

Today you will participate in one or more "sequences", each consisting of a number of "trading periods". There are two objects of interest in this experiment, francs and assets. At the start of each period you will receive the number of francs as indicated on the page entitled "Endowment Sheet". In addition, you will earn 2 francs for each unit of the asset you hold at the start of a period (please look at the endowment sheet now). During the period you may buy assets from or sell assets to other participants using francs. Details about how this is done are discussed below in section IV.

At the end of each period, your end-of-period franc balance will be converted into dollar earnings. These dollar earnings will accumulate across periods and sequences, and will be paid to you in cash at the end of the experiment. The number of assets you own carry over from one period to the next, if there is a next period (more on this below), whereas your end-of-period franc balance does not -you start each new period with the endowment of francs indicated on your Endowment Sheet. Therefore, there are two reasons to hold assets: (1) they provide additional francs at the beginning of each period and (2) assets may be sold for francs in some future period.

Please open your folder and look at the "Payoff Table" showing how your endof-period franc balance converts into dollars. The "Payoff Chart" provides a graphical illustration of the payoff table. There are several things to notice. First, very low numbers of francs yield negative dollar payoffs. The lowest number in the payoff table is **11** francs. You are not permitted to hold less than **11** francs at any time during the experiment. Second, the more francs you earn in a period, the higher will be your dollar earnings for that period. Finally, the dollar payoff from each additional franc that you earn in a period is diminishing; for example, the payoff difference between 56 and 57 francs is larger than the difference between 93 and 94 francs.

NOTE: The **total** number of francs and assets held by all participants in this market does not change over the course of a sequence. Further, the number of francs provided by each asset, **2**, is the same for all participants.

II. Preliminary Quiz

Using your endowment sheet and payoff table, we now pause and ask you to answer the following questions. We will come around to verify that your answers are correct.

1. Suppose it is the first period of a sequence (an odd-numbered period). What is the number of assets you own?

2. What is the total number of francs you have available at the start of the first period, including both your endowment of francs and the 2 francs you get for each unit of the asset you own at the start of the period?

3. Suppose that at the end of the first period you have not bought or sold any assets, so your franc total is the same as at the start of the period (your answer to question 2). What is your payoff in dollars for this first period?

5. Suppose again that at the end of period 2 you have not bought or sold any assets, so your franc total is the same as at the start of the period (your answer to question 4). What is your payoff in dollars for this second period?

_____ What would be your dollar earnings in the sequence to this point? _____

III: Sequences of Trading Periods

As mentioned, today's session consists of one or more "sequences," with each

^{4.} Suppose that the sequence continues with period 2 (an even-numbered period), and that you did not buy or sell any assets in the first period, so you own the same number of assets. What is the total number of francs you have available at the start of period 2, including both your endowment of francs and the 2 francs you get for each unit of the asset you own at the start of a period?

sequence consisting of a number of "periods." Each period lasts 3 minutes. At the end of each period your end-of-period franc balance, dollar payoff and the number of assets will be shown to you on your computer screen. One of the participants will then roll a die (with sides numbered from 1-6). If the number rolled is 1-5, the sequence will continue with a new, 3-minute period. If a 6 is rolled, the sequence will end and your cash balance for that sequence will be final. Any assets you own will become worthless. Thus, at the start of each period, there is a 1 in 6 (or about 16.7 percent) chance that the period will be the last one played in the sequence and a 5 in 6 (or about 83.3 percent) chance that the sequence will continue with another period.

If less than 60 minutes have passed since the start of the first sequence, a new sequence will begin. You will start the new sequence and every new sequence just as you started the first sequence, with the number of francs and assets as indicated on your endowment sheet. The quantity of francs you receive in each period will alternate as before, between odd and even periods, and the total number of assets available for sale (across all participants) will remain constant in every period of the sequence. If more than 60 minutes has elapsed since the beginning of the first sequence then the current sequence will be the last sequence played; that is, the next time a 6 is rolled the sequence will end and the experiment will be over. The total dollar amount you earned from all sequences will be calculated and you will be paid this amount together with your \$5 show-up fee in cash and in private before exiting the room.

If, by chance, the final sequence has not ended by the three-hour period for which you have been recruited, we will schedule a continuation of this sequence for another time in which everyone here can attend. You would be immediately paid your earnings from all sequences that ended in today's session. You would start the continuation sequence with the same number of assets you ended with in today's session, and your franc balance would continue to alternate between odd and even periods as before. You would be paid your earnings for this final sequence after it has been completed.

IV. Asset Trading Rules

During each three minute (180 second) trading period, you may choose to buy or sell assets. Trade happens on the trading window screen, show below. The current period is shown in the upper left and the time remaining for trading in this period (in seconds) is indicated in the upper right. The number of francs and assets you have available is shown on the left. Assets are bought and sold one unit at a time, but you can buy or sell more than one unit in a trading period.

To submit a bid or buying price for an asset, type in the amount of france you are willing to pay for a unit of the asset in the "Buying price" box on the right. Then click on the "Post Buying Price" button on the bottom right. The computer will tell you if you don't have enough francs to place a buy order; recall that you cannot go below a minimum of 11 frances in your account. Once your buy price has been submitted, it is checked against any other existing buy prices. If your buy price is higher than any existing buy price, it will appear under the "Buying Price" column in the middle right of the screen; otherwise, you will be asked to revise your bid upward - you must improve on existing bids. Once your buy price appears on the trading screen, any player who has a unit of the asset available can choose to sell it to you at that price by using the mouse to highlight your buy price and clicking on the button "Sell at Highest Price" (bottom center-right of the screen). If that happens, the number of france you bid is transferred to the seller and one unit of the asset is transferred from the seller to you. Another possibility is that another person will choose to improve on the buy price you submitted by entering a higher buy price. In that case, you must increase your buy price even higher to have a chance of buying the asset.

Trading Window Screen

To submit a selling or "ask" price for an asset, type in the amount of francs you would be willing to accept to sell an asset in the "Selling offer" box on the left and then click the "Post Selling Price" button on the bottom left. Note: you cannot sell an asset if you do not presently have an asset available to sell in your account. Once your sell price has been submitted, it is checked against any other existing sell prices. If your sell price is lower than any existing sell prices, it will appear on the trading screen under the "Selling Price" column in the middle left of the screen; otherwise, you will be asked to revise your sell price downward - you must improve on existing offers to sell. Any participant who has enough francs available can choose to buy the asset from you at your price by using the mouse to highlight your sell price and clicking on the button labeled "Buy at Lowest Price" (bottom center-left of the screen). If that happens, one unit of the asset is transferred from you to the buyer, and in exchange the number of france you agreed to sell the asset for is transferred from the buyer to you. Another possibility is that another person will choose to improve on the sell price you submitted, by entering an even lower sell price. In that case, you will have to lower your sell price even further to have a chance of selling the asset.

Whenever an agreement to buy/sell between any two players takes place, the transaction price is shown in the middle column of the trading screen labeled "Transaction Price." If someone has chosen to buy at the lowest price, all selling prices are cleared from the trading screen. If someone has chosen to sell at the highest price, all buying prices are cleared from the trading screen. As long as trading remains open, you can post new buy and sell prices and agree to make transactions following the same rules given above. The entire history of transaction prices will remain in the middle column for the duration of each trading period.

At the end of each period, you will be told your end-of-period franc balance and dollar payoff for the period, along with your cumulative total dollar payoff over all periods played in the sequence thus far. At then end of each sequence (whenever a "6" is rolled), we will ask you to write down, on your earnings sheet, the sequence number, the number of trading periods in that sequence and your total dollar payoff for that sequence.

V. Final Quiz

Before continuing on to the experiment, we ask that you consider the following scenarios and provide answers to the questions asked in the spaces provided. The numbers used in this quiz are merely illustrative; the actual numbers in the experiment may be quite different. You will need to consult your payoff table to answer some of these questions.

Question 1: Suppose that a sequence has reached period 15. What is the chance that this sequence will continue with another period - period 16? ______. Would your answer be any different if we replaced 15 with 5 and 16 with 6? Circle one: yes / no.

Question 2: Suppose a sequence ends (a 6 is rolled) and you have n assets. What is the value of those n assets? ______. Suppose instead, the sequence continued into another period (a 1-5 is rolled)-how many assets would you hold in the next period? ______.

For questions 3-6 below: suppose at the start of this period you are given 70 francs. In addition, you own 3 assets.

Question 3: What is the maximum number of assets you can sell at the start of the 3-minute trading period? ______.

Question 4: What is the total number of francs you will have available at the start of the trading period (including francs from assets owned)? ______. If you do not buy or sell any assets during the 3-minute trading period, what would be your end-of-period dollar payoff? ______

Question 5: Now suppose that, during the 3-minute trading period, you sold 2 of your 3 assets: specifically, you sold one asset for a price of 4 francs and the other asset for a price of 8 francs. What is your end-of-period franc total in this case? ______. What would be your dollar payoff for the period? ______. What is the number of assets you would have at the start of the next period (if there is one)? ______.

Question 6: Suppose that instead of selling assets during the trading period (as in question 5), you instead bought one more asset at a price of 18 francs. What would be your end-of-period franc total in this case? ______. What would be your dollar payoff for the period? _______. What is the number of assets you will have at the start of the next period (if there is one)? ______.

VI. Questions

Now is the time for questions. If you have a question about any aspect of the instructions, please raise your hand.

What follows below is the fourth paragraph of the instructions for subjects in the L2 and L3 treatments.

Please open your folder and look at the "Payoff Table" showing how your end-of-period franc balance converts into dollars. The "Payoff Chart" provides a graphical illustration of the payoff table. There are several things to notice. First, the lowest number in the payoff table is **11** francs. You are not permitted to hold less than **11** francs at any time during the experiment. Second, the more francs you earn in a period, the higher will be your dollar earnings for that period. Finally, the dollar payoff from each additional franc that you earn in a period is the same; the formula for converting between francs and dollars is fixed and is given at the bottom of your table.

[Type 1 subject, $\bar{d} = 2$]

This information is private. Please do not share with others.

Initial franc balance in <u>all</u> odd periods (first, third, fifth, etc.): **110**

Initial franc balance in <u>all</u> even periods (second, fourth, sixth, etc.): 44

Assets you own in the <u>first</u> period: $\mathbf{1}$

Francs paid per asset at start of each period: ${f 2}$

Therefore, you will begin the first period with $110 + 1^*2 = 112$ frances

[Type 2 subject, $\bar{d} = 2$]

This information is private. Please do not share with others.

Initial franc balance in <u>all</u> odd periods (first, third, fifth, etc.): 24

Initial franc balance in <u>all</u> even periods (second, fourth, sixth, etc.): **90**

Assets you own in the $\underline{\text{first}}$ period: **4**

Francs paid per asset at start of each period: ${f 2}$

Therefore, you will begin the first period with $24 + 4^*2 = 32$ frances

[Type 1 subject, $\bar{d} = 3$]

This information is private. Please do not share with others.

Initial franc balance in <u>all</u> odd periods (first, third, fifth, etc.): **110**

Initial franc balance in <u>all</u> even periods (second, fourth, sixth, etc.): 44

Assets you own in the <u>first</u> period: $\mathbf{1}$

Francs paid per asset at start of each period: ${\bf 3}$

Therefore, you will begin the first period with 110 + 1*3 = 113 francs

[Type 2 subject, $\bar{d} = 3$]

This information is private. Please do not share with others.

Initial franc balance in <u>all</u> odd periods (first, third, fifth, etc.): 24

Initial franc balance in <u>all</u> even periods (second, fourth, sixth, etc.): **90**

Assets you own in the $\underline{\text{first}}$ period: **4**

Francs paid per asset at start of each period: ${\bf 3}$

Therefore, you will begin the first period with 24 + 4*3 = 36 francs

PAYO How you	PAYOFF TABLE How your end-of-period franc balance converts into dollar earnings													
Francs	11	12	13	14	15	16	17	18	19	20				
Dollars	-\$15.13	-\$13.37	-\$11.92	-\$10.69	-\$9.63	-\$8.72	-\$7.93	-\$7.24	-\$6.62	-\$6.07				
Francs		0E 1 A	23 04 74	C 4 27	25	20 07.74	12 12 AC	20 02.00	29 100 00	5U 60 74				
Donais	-\$0.00	-40.14	-04./4	-04.07	-04.04	-ф3.74	-\$3.40	-ФЭ.20	-\$2.90	-\$2.74				
Francs	31	32	33	34	35	36	37	38	39	40				
Dollars	-\$2.53	-\$2.34	-\$2.16	-\$2.00	-\$1.84	-\$1.69	-\$1.55	-\$1.42	-\$1.30	-\$1.18				
Francs	41	42	43	44	45	46	47	48	49	50				
Dollars	-\$1.07	-\$0.97	-\$0.87	-\$0.78	-\$0.69	-\$0.60	-\$0.52	-\$0.44	-\$0.37	-\$0.30				
Francs	51	52	53	54	55	56	57	58	59	60				
Dollars	-\$0.23	-\$0.16	-\$0.10	-\$0.04	\$0.02	\$0.07	\$0.12	\$0.18	\$0.22	\$0.27				
Francs	61	62	63	64	65	66	67	68	69	70				
Dollars	\$0.32	\$0.36	\$0.40	\$0.45	\$0.49	\$0.52	\$0.56	\$0.60	\$0.63	\$0.66				
	•	•	•	•	•	•	•	•	•	•				
Francs	71	72	73	74	75	76	77	78	79	80				
Dollars	\$0.70	\$0.73	\$0.76	\$0.79	\$0.82	\$0.85	\$0.87	\$0.90	\$0.93	\$0.95				
Francs	81	82	83	84	85	86	87	88	89	90				
Dollars	\$0.98	\$1.00	\$1.02	\$1.05	\$1.07	\$1.09	\$1.11	\$1.13	\$1.15	\$1.17				
Erance	Q1	ap	03	Q/	95	96	97	98		100				
Dollars	\$1.19	\$1.21	\$1.22	\$1.24	\$1.26	\$1.28	\$1.29	\$1.31	\$1.32	\$1.34				
Donais	φ1.10	φ1.21	Ψ1.22	ψ1.24	φ1.20	φ1.20	φ1.20	φτ.οτ	φ1.02	φ1.04				
Francs	101	102	103	104	105	106	107	108	109	110				
Dollars	\$1.35	\$1.37	\$1.38	\$1.40	\$1.41	\$1.42	\$1.44	\$1.45	\$1.46	\$1.48				
Francs	111	112	113	114	115	116	117	118	119	120				
Dollars	\$1.49	\$1.50	\$1.51	\$1.52	\$1.53	\$1.55	\$1.56	\$1.57	\$1.58	\$1.59				
Francs	121	122	123	124	125	126	127	128	129	130				
Dollars	\$1.60	\$1.61	\$1.62	\$1.63	\$1.64	\$1.65	\$1.65	\$1.66	\$1.67	\$1.68				
The			D-11	2 6074	244 24*	(F				r				
ne conv	version to	rmula is	: Dollars	=2.60/4	-311.34^ uso this	(Francs	~ (-1.195 a to cal)). IT YOU culate :	ir end d	ninae				
Note: You	ur franc b	alance o	cannot fa	ll below	use uns 11 fran	cs.		culate y	our ea	nings.				

[Type 1 subject, concave treatments (C2 and C3)]

[Type 1 subject, concave treatments (C2 and C3)]

PAYO How you	PAYOFF TABLE How your end-of-period franc balance converts into dollar earnings												
Francs	11	12	13	14	15	16	17	18	19	20			
Dollars	-\$9.67	-\$8.33	-\$7.24	-\$6.33	-\$5.56	-\$4.91	-\$4.35	-\$3.86	-\$3.43	-\$3.05			
-	24			24	25	20			20	20			
Prancs	21 1070	ED 40	20 2015	£1 Q1	20 01 60	20 01.40	£1 21	20 £1.14	29 10 00	30 0 95			
Donais	-02.72	-Ф2.42	-\$2.10	-01.01	-01.05	-01.40	-01.01	-01.14	-40.55	-40.00			
Francs	31	32	33	34	35	36	37	38	39	40			
Dollars	-\$0.72	-\$0.60	-\$0.49	-\$0.38	-\$0.29	-\$0.20	-\$0.11	-\$0.03	\$0.04	\$0.11			
Francs	41	42	43	44	45	46	47	48	49	50			
Dollars	\$0.18	\$0.24	\$0.30	\$0.35	\$0.40	\$0.45	\$0.50	\$0.55	\$0.59	\$0.63			
Francs	51	52	53	54	55	56	57	58	59	60			
Dollars	\$0.67	\$0.71	\$0.74	\$0.78	\$0.81	\$0.84	\$0.87	\$0.90	\$0.92	\$0.95			
France	61	62	63	64	65	66	67	68	69	70			
Dollars	\$0.98	\$1.00	\$1.02	\$1.05	\$1.07	\$1.09	\$1.11	\$1.13	\$1.15	\$1.16			
Donais	40.00		φ1.02		- Q 1.01			- 	- Q 1.10	\$1.10			
Francs	71	72	73	74	75	76	77	78	79	80			
Dollars	\$1.18	\$1.20	\$1.22	\$1.23	\$1.25	\$1.26	\$1.28	\$1.29	\$1.30	\$1.32			
Francs	81	82	83	84	85	86	87	88	89	90			
Dollars	\$1.33	\$1.34	\$1.35	\$1.37	\$1.38	\$1.39	\$1.40	\$1.41	\$1.42	\$1.43			
F	01									100			
Prancs	91 ©1 //	9Z 01 AE	90 01 /G	£1 47	90 01 / 19	90 01 / 19	97 001 JO	90 £1.50	99 ©1 51	£1.50			
Dunais	φ1. 44	φ1.4O	φ1.40	φ1.47	φ1.40	φ1.40	φ1.40	φ1.00	φι.υι	φ1.0Z			
Francs	101	102	103	104	105	106	107	108	109	110			
Dollars	\$1.52	\$1.53	\$1.54	\$1.54	\$1.55	\$1.56	\$1.56	\$1.57	\$1.58	\$1.58			
Francs	111	112	113	114	115	116	117	118	119	120			
Dollars	\$1.59	\$1.60	\$1.60	\$1.61	\$1.61	\$1.62	\$1.62	\$1.63	\$1.63	\$1.64			
Francs	121	122	123	124	125	126	127	128	129	130			
Dollars	\$1.64	\$1.65	\$1.65	\$1.66	\$1.66	\$1.67	\$1.67	\$1.67	\$1.68	\$1.68			
The corre	and a f-	rmula i	Dallara	-2 0627	227 04*	(France	A / 1 200	W If	ur and -	£			
neriod fre	ersion to and balar		ode 130	-2.062/	-327.81" usa this	formul	∼(-1.388 atocal	∏. Iryou culate s	ur ena o vour est	ninge			
Note: You	ir franc b	alance c	eus 130, annot fa	we wii II helow	use uns 11 fran	rs		curate y	Jourean	nings.			
10101 101	a nanc p	and the t	annotia	1 001044	a nan								

[Type 2 subject, concave treatments (C2 and C3)]

[Type 2 subject, concave treatments (C2 and C3)]

PAYOFF TABLE										
How your end-of-period franc balance converts into dollar earnings										
Francs	11	12	13	14	15	16	17	18	19	20
Dollars	\$0.13	\$0.15	\$0.16	\$0.17	\$0.18	\$0.20	\$0.21	\$0.22	\$0.23	\$0.24
Francs	21	22	23	24	25	26	27	28	29	30
Dollars	\$0.26	\$0.27	\$0.28	\$0.29	\$0.30	\$0.32	\$0.33	\$0.34	\$0.35	\$0.37
Francs	31	32	33	34	35	36	37	38	39	40
Dollars	\$0.38	\$0.39	\$0.40	\$0.41	\$0.43	\$0.44	\$0.45	\$0.46	\$0.48	\$0.49
Francs	41	42	43	44	45	46	47	48	49	50
Dollars	\$0.50	\$0.51	\$0.52	\$0.54	\$0.55	\$0.56	\$0.57	\$0.59	\$0.60	\$0.61
-										
Francs	51	52	53	54	55	56	57	58	59	60
Dollars	\$U.62	\$U.b3	\$0.65	\$U.66	\$0.67	\$0.68	\$0.70	\$0.71	\$0.72	\$0.73
-										
Francs	61	62	63	64	65	66	6/	68	69	70
Dollars	\$0.74	\$0.76	\$0.77	\$0.78	\$0.79	\$0.80	\$0.82	\$0.83	\$0.84	\$0.85
.	71	70		74		70				
Francs	/1 #0.07	/ Z	/J	/4 #0.00	/5	/b	11	/8 70.05	79	80 #0.00
Dollars	\$0.87	\$0.88	\$0.89	\$0.90	\$0.91	\$0.93	\$0.94	\$0.95	\$0.96	\$0.98
.	01						07			
Francs		0∠ ∉4_00	0.0 0.01	C4	00	00	0/ #1.0C	00 #1.07	03 #1 00	90 #4 40
Dollars	\$0.99	\$1.00	\$1.01	\$1.02	\$1.04	\$1.05	\$1.00	\$1.07	\$1.09	\$1.1U
Francs	91	92	93	94	95	96	97	98	99	100
Dollars	\$1.11	\$1.12	\$1.13	\$1.15	\$1.16	\$1.17	\$1.18	\$1.20	\$1.21	\$1.22
Francs	101	102	103	104	105	106	107	108	109	110
Dollars	\$1.23	\$1.24	\$1.26	\$1.27	\$1.28	\$1.29	\$1.30	\$1.32	\$1.33	\$1.34
Francs	111	112	113	114	115	116	117	118	119	120
Dollars	\$1.35	\$1.37	\$1.38	\$1.39	\$1.40	\$1.41	\$1.43	\$1.44	\$1.45	\$1.46
Francs	121	122	123	124	125	126	127	128	129	130
Dollars	\$1.48	\$1.49	\$1.50	\$1.51	\$1.52	\$1.54	\$1.55	\$1.56	\$1.57	\$1.59
The conversion formula is: Dollars =0.0122xFrancs. If your end of period										
franc balance exceeds 130, we will use this formula to calculate your earnings.										
Note: You	r franc b	alance c	annot fal	l below	11 fran	cs.				

[Type 1 subject, linear treatments (L2 and L3)]

 $[{\rm Type}\ 1 \ {\rm subject}, \ {\rm linear} \ {\rm treatments} \ ({\rm L2} \ {\rm and} \ {\rm L3})]$

PAYOFF TABLE										
How your end-of-period franc balance converts into dollar earnings										
Francs	11	12	13	14	15	16	17	18	19	20
Dollars	\$0.18	\$0.19	\$0.21	\$0.23	\$0.24	\$0.26	\$0.27	\$0.29	\$0.31	\$0.32
Francs	21	22	23	24	25	26	27	28	29	30
Dollars	\$0.34	\$0.35	\$0.37	\$0.39	\$0.40	\$0.42	\$0.44	\$0.45	\$0.47	\$0.48
Francs	31	32	33	34	35	36	37	38	39	40
Dollars	\$0.50	\$0.52	\$0.53	\$0.55	\$0.56	\$0.58	\$0.60	\$0.61	\$0.63	\$0.65
Francs	41	42	43	44	45	46	47	48	49	50
Dollars	\$0.66	\$0.68	\$0.69	\$0.71	\$0.73	\$0.74	\$0.76	\$0.77	\$0.79	\$0.81
Francs	51	52	53	54	55	56	57	58	59	60
Dollars	\$0.82	\$0.84	\$0.85	\$0.87	\$0.89	\$0.90	\$0.92	\$0.94	\$0.95	\$0.97
Francs	61	62	63	64	65	66	67	68	69	70
Dollars	\$0.98	\$1.00	\$1.02	\$1.03	\$1.05	\$1.06	\$1.08	\$1.10	\$1.11	\$1.13
Francs	71	72	73	74	75	76	77	78	79	80
Dollars	\$1.15	\$1.16	\$1.18	\$1.19	\$1.21	\$1.23	\$1.24	\$1.26	\$1.27	\$1.29
-										
Francs	81	82	83	84	85	86	8/	88	89	90
Dollars	\$1.31	\$1.32	\$1.34	\$1.35	\$1.37	\$1.39	\$1.40	\$1.42	\$1.44	\$1.45
<u></u>	01			- 04	05		07			100
Prancs	01 A7	9Z 01.40	93 01 50	04 01 50	90 01 50	90	97 01 EC	90 11 20	09 01 CO	0U
Dollars	\$1.47	Φ 1.40	\$1.5U	\$1.5Z	φ1.50	\$1.55	\$1.50	\$1.50	φ1.60	\$1.01
Erance	101	102	103	104	105	106	107	108	100	110
Dollare	\$1.63	\$1.65	\$1.66	\$1 68	C1 60	¢1 71	¢1 73	¢1 7/	¢1 76	\$1.77
Dunais	φ1.00	φ1.00	φ1.00	φ1.00	φ1.00	ψι.ει	ψι.τυ	ψι.(4	ψι.τυ	ψι.cr
France	111	112	113	11/	115	116	117	118	119	120
Dollare	¢1 70	¢1.81	¢1.82	\$1.84	\$1.85	\$1.87	¢1 89	\$1 QO	\$1.92	\$1 Q/
Dunais	ψιτο	φι.σι	ψ1.02	ψ1.04	φ1.00	ψ1.Or	φ1.00	φ1.00	ψ1.02	ψ1.04
Francs	121	122	123	124	125	126	127	128	129	130
Dollars	\$1.95	\$1.97	\$1.98	\$2.00	\$2.02	\$2.03	\$2.05	\$2.06	\$2.08	\$2.10
Donara	φ1.00	φ1.01	φ1.00	φ2.00	φ2.02	φ2.00	φ2.00	φ2.00	φ2.00	φ2.10
The conversion formula is: Dollars =0.0161vErance. If your and of pariod										
franc balance exceeds 130, we will use this formula to calculate your earnings										
Note: You	r franc b	alance c	annot fal	l below	11 fran	cs.	culute j	Junear	inigs.	

 $[{\rm Type}~2$ subject, linear treatments (L2 and L3)]

Payoff Chart

Instructions [Holt-Laury Paired Lottery Task]

You will face a sequence of 10 decisions. Each decision is a paired choice between two options, labeled "Option A" and "Option B". For each decision you must choose either Option A or Option B. You do this by clicking next to the radio button corresponding to your choice on the computer screen. After making your choice, please also record it on the attached record sheet under the appropriate headings.

Decision	Option A			Option B	
1	Receive \$6.00	10 out of 100	draws OR	Receive \$11.55	10 out of 100 draws OR
	Receive \$4.80	90 out of 100	draws	Receive \$ 0.30	$90~{\rm out}$ of $100~{\rm draws}$
2	Receive \$6.00	20 out of 100	draws OR	Receive \$11.55	$20~{\rm out}$ of $100~{\rm draws}~{\rm OR}$
	Receive \$4.80	80 out of 100	draws	Receive \$ 0.30	$80 \ {\rm out} \ {\rm of} \ 100 \ {\rm draws}$
3	Receive \$6.00	30 out of 100	draws OR	Receive \$11.55	30 out of 100 draws OR
	Receive \$4.80	70 out of 100	draws	Receive \$ 0.30	$70~{\rm out}$ of $100~{\rm draws}$
4	Receive \$6.00	40 out of 100	draws OR	Receive \$11.55	$40 \ {\rm out} \ {\rm of} \ 100 \ {\rm draws} \ {\rm OR}$
	Receive \$4.80	60 out of 100	draws	Receive \$ 0.30	$60 \ {\rm out} \ {\rm of} \ 100 \ {\rm draws}$
5	Receive \$6.00	50 out of 100	draws OR	Receive \$11.55	$50~{\rm out}$ of $100~{\rm draws}~{\rm OR}$
	Receive \$4.80	50 out of 100	draws	Receive 0.30	$50~{\rm out}$ of $100~{\rm draws}$
6	Receive \$6.00	60 out of 100	draws OR	Receive \$11.55	60 out of 100 draws OR
	Receive \$4.80	40 out of 100	draws	Receive \$ 0.30	$40 \ {\rm out} \ {\rm of} \ 100 \ {\rm draws}$
7	Receive \$6.00	70 out of 100	draws OR	Receive \$11.55	$70~{\rm out}$ of $100~{\rm draws}~{\rm OR}$
	Receive \$4.80	30 out of 100	draws	Receive \$ 0.30	30 out of 100 draws
8	Receive \$6.00	80 out of 100	draws OR	Receive \$11.55	$80 \ {\rm out} \ {\rm of} \ 100 \ {\rm draws} \ {\rm OR}$
	Receive \$4.80	20 out of 100	draws	Receive \$ 0.30	$20 \ {\rm out} \ {\rm of} \ 100 \ {\rm draws}$
9	Receive \$6.00	90 out of 100	draws OR	Receive \$11.55	90 out of 100 draws OR
	Receive \$4.80	10 out of 100	draws	Receive \$ 0.30	$10 \ {\rm out} \ {\rm of} \ 100 \ {\rm draws}$
10	Receive \$6.00	100 out of 100	draws OR	Receive \$11.55	100 out of 100 draws OR
	Receive \$4.80	0 out of 100	draws	Receive \$ 0.30	0 out of 100 draws

The sequence of 10 decisions you will face are as follows:

After you have made all 10 decisions, the computer program will randomly select 1 of the 10 decisions and your choice for that decision will be used to determine your payoff. All 10 decisions have the same chance of being chosen.

Notice that for each decision, the two options describe two different amounts of money you can receive, depending on a random draw. The random draw will be made by the computer

and will be a number (integer) from 1 to 100 inclusive. Consider Decision 1. If you choose Option A, then you receive \$6.00 if the random number drawn is 10 or less, that is, in 10 out of 100 possible random draws made by the computer, or 10 percent of the time, while you receive \$4.80 if the random number is between 11 and 100, that is in 90 out of 100 possible random draws made by the computer, or 90 percent of the time. If you choose Option B, then you receive \$11.55 if the random number drawn is 10 or less, that is, in 10 out of 100 possible random draws made by the computer, while you receive \$0.30 if the random number is between 11 and 100 possible random draws made by the computer, while you receive \$0.30 if the random number is between 11 and 100, that is in 90 out of 100 possible random draws made by the computer, while you receive \$0.30 if the random number is between 11 and 100, that is in 90 out of 100 possible random draws made by the computer, while you receive \$0.30 if the random number is between 11 and 100, that is in 90 out of 100 possible random draws made by the computer, or 90 percent of the time. Other decisions are similar, except that your chances of receiving the higher payoff for each option increase. Notice that all decisions except decision 10 involve random draws. For decision 10, you face a certain (100 percent) chance of \$6.00 if you choose Option A or a certain (100 percent) chance of \$11.55 if you choose Option B.

Even though you make 10 decisions, only ONE of these decisions will be used to determine your earnings from this experiment. All 10 decisions have an equal chance of being chosen to determine your earnings. You do not know in advance which of these decisions will be selected.

Consider again decision 1. This will appear to you on your computer screen as follows:

The pie charts help you to visualize your chances of receiving the two amounts presented by each option. When you are ready to make a decision, simply click on the button below the option you wish to choose. Please also circle your choice for each of the 10 decisions on your record sheet. When you are satisfied with your choice, click the Next button to move on to the next decision. You may choose Option A for some decisions and Option B for others and you may change your decisions or make them in any order using the Previous and Next buttons. When you have completed all 10 choices, and you are satisfied with those choices you will need to click the Confirm button that appears following decision 10. The program will check that you have made all 10 decisions; if not, you will need to go back to any incomplete decisions and complete those decisions which you can do using the Previous button. You can also go back and change any of your decisions prior to clicking the confirm button by using the Previous button.

Once you have made all 10 decisions and clicked the Confirm button, the results screen will tell you the decision number 1, 2,...10, that was randomly selected by the computer program. Your choice of option A or B for that decision (and that decision only) will then be used to determine your dollar payoff. Specifically, the computer will draw a random number between 1 and 100 (all numbers have an equal chance) and report to you both the random number drawn and the payoff from your option choice.

Your payoff will be added to the amount you have already earned in today's experiment. Please circle the decision that was chosen for payment on your record sheet and write down both the random number drawn by the computer program and the amount you earned from the option you chose for that decision on your record sheet. On the computer monitor, type in your subject ID number, which is the same number used to identify you in the first experiment in today's session. Then click the "Save and Close" button.

Are there any questions before we begin?

Please do not talk with anyone while these decisions are being made. If you have a question while making decisions, please raise your hand.

Record Sheet

	Circle Option Choice				
Decision 1	А	В			
	Circle Option Choice				
Decision 2	А	В			
	Circle Op	otion Choice			
Decision 3	А	В			
	Circle Option Choice				
Decision 4	А	В			
	Circle Option Choice				
Decision 5	А	В			
	Circle Option Choice				
Decision 6	А	В			
	Circle Op	otion Choice			
Decision 7	А	В			
	Circle Option Choice				
Decision 8	А	В			
	Circle Op	otion Choice			
Decision 9	А	В			
	Circle Option Choice				
Decision 10	А	В			

Player ID Number_____

At the end of this experiment, circle the Decision number selected by the computer program for payment. Write down the random number drawn for the selected decision (between 1 and 100): ______ Write down your payment earned for this part of the experiment: <u>\$</u>_____