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Abstract

This paper describes examples of non-self averaging phenomena drawn from
macroeconomic and physics fields. They are models of random clusters, such
as Poisson-Dirichlet models, urn models, and models of random transport
through disordered media. In particular, we discuss several three-parameter
extension of the two parameter Poisson-Dirichlet model. These three pa-
rameter models inherit non-self averaging asymptotic behavior of the two-
parameter PD(α, θ) model, with positive α. Models of random additive
types and random multiplicative types are mentioned. A sufficient condi-
tion for models to be non-self averaging is also presented.
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Introduction

Whether in growth or business cycle models, the fundamental reason for
often complex optimization exercises is that they are expected to lead us to
better understanding of dynamics of the means of aggregate variables.

The standard model thus begins with the analysis of the optimization of
the representative agents, and translates the results into the analysis of the
economy as a whole. Economists doing these exercises are, of course, well
aware that economic agents differ, and that they are subject to idiosyncratic
(or microeconomic) shocks. Their analyses are simply premised on the as-
sumption that those microeconomic shocks and differences cancel each other
out in large systems, and that the behavior of aggregate variables are repre-
sented by their means which, in turn, can be well captured by the analysis
based on the representative agents.

The standard model thus explicitly or tacitly presumes the representa-
tive agent. Economic agents are homogeneous in that they face the same
instantaneous probability that an ”event” occurs to them. When we drop
this crucial assumption, a quite different picture emerges.

It has become painfully clear that the so-called Dynamic Stochastic Gen-
eral Equilibrium framework is inadequate and must be substantially modi-
fied or replaced in order to deduce consequences of macroeconomic policies
in economies composed of heterogeneous and random clusters of agents.

Using simple stochastic models, this paper aims to demonstrate that this
tacit and yet the fundamental assumption underlying endogenous growth
and real business cycle theories, namely the law of large numbers, is not
generally tenable in situations with power-law tails or when groups of het-
erogeneous agents are involved.

We first explain the notion of ”non-self-averaging”, the crucial concept
for our purpose. A sufficient condition for non-self averaging is later pre-
sented.

Given N data points, Xi, i = 1, 2, · · ·N , denote the mean of these samples
by

Xµ = (X1 + X2 + · · ·+ XN )/N.

Then, the sample coefficient of variation of these point is

ĈV (X) =

√∑i=N
i=1 (Xi −Xµ)2

Xµ
.

In statistical literature this ratio in the coefficient of variation is denoted
by TN , that is

TN :=
VN

SN
,

where VN is the sum of (Xi −Xµ)2 and SN = X1 + · · ·XN )/N.
The sample coefficient of variation is then expressed as

ĈV (X) = NTN − 1.
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In the statistical literature some analysis of the coefficients of variation
are available. For example, Albrecher, and Teugels (2007) assume that 1 −
F (x) ≈ x−ρl(x), where F (x) is the distribution function, l(x) is slowly
varying, that is, the ratio l(λx)/l(x) goes to 1 as x tends towards infinity, for
all positive λ. Another related result is obtained by assuming that samples
are drawn from normal distributions. .

These analytical results, however, require rather special assumptions
such as slowly varying functions, or normal families of densities. We do
not discuss these matters here, but discuss conditions under which non-self
averaging behavior obtains.

A Sufficient Condition for Non-Self Averaging

The basic idea to show that a given set of random variables are non-self
averaging is as follows. Let Xmp be the most probable value of X, and Xµ

is the mean. Assume that Xmp ia (much) smaller than Xµ. Note that

E(X −Xµ)2 = E(X −Xmp)2[1−
(Xmp −Xµ)2

E(X −Xmp)2
].

Then, dividing both sides by X2
µ, and noting that the ratio in the above

square bracket is less than 1, we see that the left-hand side, which is the
square of the coefficient of variation is positive. This means that the coeffi-
cient of variations is positive, not zero, that is the random variable X is not
self -averaging. This is a sufficient condition for non-self averaging.

Note that E(X2) > (EX)2. If E(X2) = E(X2), then X is self-averaging.
See Janson (1996).

The notion of ”non-self-averaging” means that a size-dependent set of
random variable Xn, n = 1, . . . N of the model has the coefficient of variation
which does not converge to zero as N , e.g., model size, goes to infinity.1

This quantity is normally expected to converge to zero as model size
(e.g. the number of economic agents) goes to infinity. In this case, the
model is said to be ”self-averaging.” Notions of averages and typical, that
is, expected value and most probable value are taken to be equal in almost
all macroeconomic models that are self-averaging. This presumption is im-
portant because non-self-averaging models are sample dependent, and some
degree of impreciseness or dispersion remains about the time trajectories
even when the number of economic agents go to infinity.

This implies that focus on the mean path behavior of macroeconomic
variables does not have any scientific justification. In random products,
unlike in random sums, means and most probable values are different.

In random multiplicative models expected values and most probable val-
ues diverge. We demonstrate that a common practice of taking logarithms
of products to produce sums and constructing log-linear models in such situ-
ations does not work well as we will demonstrate. As pointed out by Redner

1This limit is called thermodynamic limit in the physics terminology.
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(1990), and in Aoki (1997, App.1) this procedure of taking logarithms of
products to convert products into sums and treating them as random sums
involves a misapplication of the method of Laplace and produces erroneous
results.

Policy Implications

The main analytical exercise by the mainstream macroeconomists such as
Romer (1986), Lucas (1988), Grossman and Helpman (1991), and Aghion
and Howitt (1992), is to explicitly consider the optimization by the rep-
resentative agents using quadratic criterion functions in such activities as
education, on-the-job training, basic scientific research, and process and
product innovations. This approach is found not only in the study of eco-
nomic growth, but also in research on business cycles as well.

In this paper we argue that this research program, which dominates
modern macroeconomics, is misguided, because it does not recognize the
distinction betweeen self-averaging and non-self averaging aspects of their
optimization problems. Whether in growth or business cycle models, the
fundamental motivation for often complex optimizaation excercises is that
they are expected to lead us to better understanding of dynamics of the mean
or aggregate variables. The standard procedure is to begin the analysis of
optimization for the representative agent, and translate it into the analysis
of the economy as a whole. These exercises presume that different miccroe-
conomic shocks and differences among agents will cancel out in the means,
and the results can be well captured by the analysis on the representative
agents.

We show that the phenomenon of non-self averaging has material con-
sequences for macroeconomic policy development. Specifically, models that
exhibit non-self averaging—i.e., those whose standard deviations divided
by the means, do not decrease as the systems grow—are ubiquitous and
macroeconomic simulaltions using them can give rise to non-informative or
misleading policy results.

This phenomenon is related directly to the magnitude of economic fluc-
tuations and is consistent with the size and scaling of fluctuations observed
both recently and in the past.

By way of examples, we show how macroeconomic policy can be ren-
dered totally ineffective solely as a result of non-self averaging. All to-
gether three types of non-self averaging models are discussed. They are
two-parameter Poisson Dirichlet models; urn models; and two block of in-
terdependent macroeconomic models. See Aoki (2008a,b,c). After a brief
introduction to non-self averaging, we present analytical results on policy
ineffectiveness by means of two simple introductory examples. These show
the importance of coefficients of variation, and how they enter into a well-
known economics problem and that if the coefficient of variation becomes
large then policy becomes ineffective.
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This paper then discusses relations of urn models with macroeconomic
models and exhibits urn models in the literature that are non-self averaging
even though this aspect is not noted in the urn literature.

In this paper we examine non-self averaging performance index, and
question the role of the ”mean” dynamics when the measure of approxi-
mation errors by quadratic expression does not convey useful information,
either in policy multiplier context, or in conducting or designing large scale
Monte Carlo studies. Models with large values of coefficients of variation
have smaller policy multipliers than models with smaller coefficients of vari-
ation.

Poisson-Dirichlet model

In Feng and Hoppe (1998) and Pitman (1999) two-parameter model for
stochastic clustering by agents has been invented, which is denoted by
PD(α, θ). It has been interpreted that parameter α be controlling formation
of new clusters, and θ growth of one of the existing clusters.

More specifically, let Kn denotes the number of clusters formed by the n
entering agents who have arrived by time t. We assume that the formation
of new clusters is governed by

Pr(Kn+1 = k + 1|K1, · · · ,Kn−1,Kn = k) =
θ + kα

n + θ
,

and
Pr(Kn+1 = k|K1, · · · ,Kn−1,Kn = k) =

n− kα

n + θ
.

It is known that this set of equations generates the Poisson-Dirichlet
process. See Yamato and Sibuya (2000) for the derivation of the recursion

E(Kn+1) =
θ

n + θ
+ (1 +

α

n + θ
)EKn, (1)

and from it they obtained a closed form expressions for E(Kn), and its vari-
ance. Using these they have derived the asymptotic expression for Kn/nα,
and their mean and the variance. We can also calculate the expression for
the coefficient of variation of Kn/nα, although they did not focus on this
important statistics. Here both parameters are assumed to be positive.

They derived that

E(Kn/nα) ≈ Γ(θ + 1)/[αΓ(θ + α)]. (2)

Hence CV (Kn/nα) has a positive limit value as n tends toward ∞. Aoki
(2008) has noted that its coefficient of variation is positive for positive values
of α, and is zero when α is zero. He also devised a three-parameter version
of the original two-parameter Poisson-Dirichlet model, which is described
next
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Three parameter extension of Poisson-Dirichlet pro-
cess models

In this section we extend the two-parameter model mentioned above by
introducing a third positive-valued parameter γ,with values between 0 and
α, and modifying parameter θ in two ways, as shown below, and produce
four ways of extension of the basic PD model.

In this section we discuss four versions of the basic three parameter mod-
els. We show that these three-parameter models are all non-self averaging.
All four extensions introduced above are non-self averaging.

Version 1 Model

Consider the following set of conditional probability statements:

Pr(Kn+1 = k + 1|K1, · · · ,Kn = k) =
θ + kα−
n + θ+

,

Pr(Kn+1 = k|K1, · · · ,Kn = k) =
n− kα−
n + θ+

,

and
Pr(Kn+1 = k − 1|K1, · · · ,Kn = k) =

γ

n + θ+
,

where α− = α− γ, θ+ = θ + γ, and where 0 < γ < α.
The newly introduced parameter γ indicates negative influences that a

financial sector exerts on the new cluster formation. The third equation
shows this directly by increasing the probabilty that the number of the
current sector is reduced by one.

It is the main purpose of this note to show that this three parameter
model is reducible two PD models.

The recursion for the expected cluster sizes is

EKn+1 =
θ−

n + θ+
+ {1 +

α−
n + θ+

}E(Kn). (3)

Now define a new random variable

Xn = (θ+/θ−)Kn,

E(X1) = θ+/θ−.

This random variable Xn satisfies the same recursion as (1). This ran-
dom variable satisfies the same recursion equation as E(Kn) if α and θ are
changed into θ+ and α−.

There are at least three other models which admit similar simple changes
of variables to prove the existence of the same class of distributions as
PD(α, θ)).
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Version2

Suppose next that the conditonal probability expression is changed to have
θ + kα − γ, n − kα, and γ, all divided by (n + θ) on the right-hand side in
the three conditional probability expressions.

Eq (2) is changed into

E(Kn+1) = (1 +
α−

n + θ
)EKn +

θ

n + θ
.

Version 3

The right-hand side of the three conditional probability expressions are now
θ + kα, n− kα− γ, and γ, all divided by (n + θ).

This time the recursion for the conditional expression for Kn becomes

EKn+1 = (1 +
α−

n + θ
)EKn +

θ+

n + θ
.

By defining Yn = (θ/θ+)Kn, we obtain the same recursion as (1) except
for the fact that α is replaced by α−.

Version 4

Finally, the three conditional probabilities have θ + kα− γ, n− kα + γ, and
νγ, all divided by θ + n + νγ.

In this case, let θ+ = θ + νγ, and θ− = θ − νγ.
Then define

Xn =
θ+

θ−
Kn − c,

where c = θ+

θ−
γ
α . This yields a recursion

EXn+1 = (1 +
α

n + θ+
)EXn +

θ+

n + θ+
.

Then we obtain the recursion for it as the same as (2) with θ replaced
with θ+. It is straightforward to calculate the variances and means, and the
coefficients of variations of these versions. The first three versions are seen
to be non-self-averaging by straightforward calculations.

Since it is tedious to discuss all four versions, we discuss version 1 as an
example. Its coefficient of variation is given by

CVn =
√

1 + γ/nθ.

Consequences of Non-Self Averaging Phenomenona:
Some Examples

This section describes some examples of how non-self averaging disturbances
reduce effects of policy multipliers. These examples hopefully go a step
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further in understanding my view that lack of recognizing the significance
of non-self-averaging phenomena is one of the reasons why ”Economists Got
it So Wrong” in the latest macroeconomic crises.

Example 1: Relative Merits of Alternatives

Given a sequence of realization of a random variable Xn, n = 1, 2, . . ., let
CV (Xn) denote their coefficients of variations. We recall that the random
variable Xn is called self-averaging if the limit of CV (Xn) goes to zero as n
tends to infinity, and is called non-self-averaging if the limit is some positive
number or tends to infinity.

If the sequence is self-averaging it is easy to see that random variables
will cluster around the mean of Xn, and the expected value E(Xn) may
be used as representative value of the sequence. On the other hand, if the
variables are not self-averaging, one can not rely on the mean to give useful
information on the behavior of the random variables.

We give a simple example to illustrate this idea. Suppose that two
choices are available to a set of agents. A fraction x of the agents choose
alternative 1, and the rest alternative 2. Choice 1 returns v1(x) and Choice
2 returns v2(x) where x denotes the fraction of agents with Choice 1. Here
we assume that the returns depend on x, that is, the fraction of agents with
choice 1. Assume that policy makers can influence the agents over these
choices. These two choices could be two alternate routs between two cities,
or two ways of producing some goods, and so on.

For simpler explanation,suppose that the difference of the two returns

δv(x) = v1(x)− v2(x)

is a Gaussian random variable with mean m(x), and variance φ(x)2.
Then, the probability that this difference is positive is given by

P (δv(x) > 0) =
1
2
[1 + erf(u)],

where u = m(x)/(
√

(2)φ), and the error function is defined by

erf(x) = κ

∫
e−u2

du,

where κ = 2/
√

(π), and the integral is evaluated from 0 to x.
Note that the coefficient of variation makes its appearance here. It is

the ratio of the standard deviation over the mean

CV (x) =
φ(x)
m(x)

.

We use a useful device of Ingber (1982) to approximate the error function
by the hyperbolic tangent

erf(u) ≈ tanh(κu).
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By expanding the both sides as power series in u we see that

1
2
[1 + erf(u)] ≈ 1

1 + κu

is a good approximation for small values of u, as shown by the next two
expressions which compare the series expansions of the two functions

erf(u) = κ(u− u3

3
+

u5

10
) + . . . ,

and

tanh(u) = κ(u− κ2

3
u3 +

κ4

7.5
u5) + . . . = κ(u− 1.21

3
u3 +

1.6
7.5

u5) + · · · .

Using this approximation we show that the phenomenon of non-self av-
eraging has material consequences for macroeconomic policy development in
models that exhibit non-self averaging behavior are ubiquitous and macroe-
conomic simulations using them can give rise to uninformative or misleading
policy results. See p.64 of Aoki and Yoshikawa (2007). (The third term in
the error function term in the book has a typographical error. The term
u5/5 should be u5/10.)

The phenomena of non-self averaging effects reducing effectiveness of
macroeconomic policy actions are related directly to the magnitudes of eco-
nomic fluctuations and are consistent with the size and scaling of fluctuations
observed both recently and in the past. By means of some of these exam-
ples we show how macroeconomic policy actions can be rendered totally
ineffective solely as a result of non-self averaging property of models.

Some Examples: Binary Choice Models

As an example, consider a binary choice model, McFadden (1974),or Aoki
(2002, Sec. 6.3) in which each agent makes a binary choice. Here we give
a simple example and leave more detailed analysis to Aoki and Yoshikawa
(2007, p. 63).

Suppose that agents are faced with two choices. They have some idea
of the mean return of each of the two choices and associated uncertainty by
some variance expressions. Let two choices have values V1 and V2, but we
observe it with error εi as V ∗

i , i = 1, 2

V ∗
i = Vi + εi, i = 1, 2.

Define ε = ε1 − ε2. Assume that ε is distributed as

Pr(ε < x) = (1 + e−βx)−1,

for real number x, and where β > 0 is a parameter of this distribution.
McFadden models agents’ discrete choices as the amximization of utilities

Uj , j = 1, . . . ,K, where Uj is associated with choice j and K is the total
number of available choices. Let Uj = Vj + εj , j = 1, 2, . . . ,K. We are really
interested in picking the maximum of V ′s, not of U ′s.
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Policy Multiplier in Binary Choice Models

More realistically, consider a situation where a total of N agents adopt one
of two production technologies, one produces y∗ per agent, and the other y
per agent per period, where y < y∗. The total output per period is

Y = ny∗ + (N − n)y = N [xy∗ + (1− x)y],

where x = n/N is the fraction of agents which chose the more efficient
technology. Stochastically one of (N − n) agent changes its choice at the
rate

r = N(1− x)η1(x),

or one of n agents change its choice at the rate

l = Nxη2(x),

where η1(x) = exp(βg(x)) and η2 = 1−η1. Here g(x) is the policy multiplier.
Policy maker wants to persuade agents to switch to using the high yielding
technique.

In Aoki-Yoshikawa (2007, Sec. 4.2) it is shown that the parameter β is
κ/φ(x), κ > 0, which is a constant, and where φ(x)is the standard deviation
associated with this binary choice situation. Changing g(x) to g(x) + h(x)
by policy maker haseffectively the multiplier

E = δφ/h(φ) =
2

1− 2g′(φ∗)
> 0,

where the coefficient of variation is σ(x)/g(x).
As the CoV gets large, the fraction x tends to 1/2, that is no policy

effects in attempting to increase the output.
Many stochastic processes can be interpreted as urn models. We can eas-

ily conceive urn models for path-dependennt economic or social phenomena.
See Hoppe (1984), for example.

We next discuss urn models next a ssome models exhibit non-self averag-
ing behavior. We mention balanced triangular urn models with two colors,
discussed by Puyhaubert (2003), and Flajolet et al (2006). At least some
of their urn models are non-self averaging, even though their emphasis was
not on this aspect.

Urn Models

Many stochastic processes can be interpreted as urn models. An important
characteristic of urn models is the property of path-dependence. An obvious
example would be models of contageous diseases. Balanced triangular urn
mdoels with balls of two colors have been used by Puyhaubert (2003) and
Flajolet et. al. (2006). Some of the urn models discussed by them are
non-self averaging, even though the emphasis of their presentation was not
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on this aspect. Using their derivations it is a simple matter to calculate the
coefficients of variation and discover that some of their models are indeed
non-self averaging.

We can easily conceive urn models for path-dependent economic or so-
cial phenomena. An important characteristic of urn models is that such
processes are path-dependent. An obvious example would be models of con-
tagious diseases. See Eggenberger and Polya (1923), for an example of an
urn model to describe contageous diseases. An important characteristic of
urn models is that such processes are path-dependent.

Some Examples of Non-Self Averaging outside Macroe-
conomics

This section briefly describes models which are non-self averaging in non-
economic litrature. The first is for random variables with power-law tails,
and the others are comments on examples found in primarily physics liter-
ature.

Random Variables with Power-law Tails

This example was pointed out to me by Yoshi Fujiwara (his e-mail to me on
Aug. 2, 2009). I thank him for his letting me have this information.

Let X has a tail distribution P (X > x) which is proportional to x−a for
some positive a. The m − th distribution of X is N−1+m/a for m = 1 and
m = 2. Then CV 2 is proportional to < X2 > − < X >2/< X >2= N − 1,
hence goes to infinity as N goes to infinity, that is, in the thermodynamic
limit.

Non-Self Averaging in Physics Literature

We next mention some papers in physics. In physics literature, there are sev-
eral articles by Derrida (1987) on systems which exhibits non-self averaging
effects. Derrida has a number of other publications related to non-self aver-
aging. In particular, we mention statistical properties of randomly broken
objects, also known as random stick braking phenomenon, and multivalley
nstructures in disordered systems, Derrida and Bessis (1988), Derrida and
Flyvbjerg (1987, 1989), Krapivsky, Grosse, and Ben-Nadin (2000). For ex-
ample in Derrida and Flyvbjerg (1987, 1989)), statistical properties of the
multivalley structure of disordered sysetm and of randomly brken objects are
mentioned. Some other physics papers are Martino and Giansanti, (1998),
Maslov (1993), Wiseman and Domany (1995).

Some of these papers have close resemblance with economic papers on
market shares. See Sherer (1980), and Hirschman (1960) on market shares.
Kawasaki and Odagaki (2003) have a model with disordered transitions
which results in non-self averaging behavior.
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1 Non-Self Averaging Urn Models

Many stochastic processes can be interpreted as urn models. An important
characteristic of urn models is their path depedence, i.e, urn models often
exhibit non-self averaging behavior. This has been noticed in models of
contagious diseases modeled by urn models, Eggenberger and Polya (1932).
More recently. Flajolet and Puyhaubert (2006) and Puyhaubert (2005) have
examined urn models which exhibit non-self averaging behavior

A Binomial Example of Non-Self Averaging

For a binomial random variable Z with two values z1 > z2 > 0, let Z((N)
denote the product of N such factors, Z(N) = zn

1 z2
N−n with n = 0, 1, · · ·N .

Then, its average value is

Z(N)m =
∑

CN,npnqN−nzn
1 zN−n

2 = (pz1 + qz2)N ,

where q = 1− p, and CN,n is the combinatorial factor N !/(N − n)!n!.
Thus, the mean (average value) of the product of N binary variables is

Z(N)m = (pz1+qz2)N . The most probable value of the product is Z(N)mp =
(zp

1z
q
2)

N . Note that the average value of Z(N) is much larger than its most
probable value. Indeed this ratio

Z(N)m

Z(Nmp
=

(pz1 + qz2)N

[(z1)p(z2)q]N

diverges exponentially in N as N tends to infinity.

A Multiplicative Growth Model: An Example

Consider a model of a sector with N firms in an economy. Firms compete
with each other, and dynamics of their growth or decay are described as
follows:

The total output Y (t) of N firms (sectors) grows as

Y (t + 1) = (1 + γg)Y (t)

with probability p, or decays as

Y (t + 1) = (1− f)Y (t)

with probability 1− p, where p is some positive number.
The growth rate of this model of thses N firms is given by

rN =
N∑

k=0

CN,kp
kqN−k ln[a

k

N
+ b

N − k

N
]

where q = 1 − p, and a = 1 + γg, and b = 1 − f , where γ is some positive
parameter to indicate interaction or externality or influence of groing furns
on the rest of the firms. Note that a > 1 > b > 0.
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The ratio k/N is the fraction of firms with positive growth, and param-
eter γ is to denote positive externality of the growing firms on the industry
growth.

The two- and three-parameter models discussed at the beginning of this
paper are basically models of random sums. The class of models of this
section involves random products. It is not quite correct to dismiss random
product models, saying that logarithms of random products are random
sums, hence we may use log-linear approximations.

Redner (1990), among other people, showed the danger in converting
random products into sums of logarithms and be content to work with ran-
odm sum models. As Redner shows this type of approximation often involve
incorrect use of the methods of Lyapunov, see also Aoki (1996, sec. A1.) as
well.

We apply the sufficient conditon derived above to the rate of growth of
this multiplicative model. We calculate the mean and the most probable
values of rN and apply the sufficient condition derived above, after calculat-
ing the mean and variance. In models where means and the most probable
values are not close to each other, log-linear approximations break down.
By incorporating some spill-over effects among agents, we could construct
random product models which exhibit ”non-self averaging” behavior.
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