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Abstract

In this paper we provide a new methodology to analyze the (Gaussian) profile quasi likelihood
function for panel regression models with interactive fixed effects, also called factor models. The
number of factors is assumed to be known. Employing the perturbation theory of linear operators,
we derive a power series expansion of the likelihood function in the regression parameters. Using
this expansion we work out the first order asymptotic theory of the quasi maximum likelihood
estimator (QMLE) in the limit where both the cross sectional dimension and the number of time
periods become large. We find that there are two sources of asymptotic bias of the QMLE: bias
due to correlation or heteroscedasticity of the idiosyncratic error term, and bias due to weak
(as opposed to strict) exogeneity of the regressors. For idiosyncratic errors that are independent
across time and cross section we provide an estimator for the bias and a bias corrected QMLE. We
also discuss estimation in cases where the true parameter is on the boundary of the parameter set,
and we provide bias corrected versions of the three classical test statistics (Wald, LR and LM test)
and show that their asymptotic distribution is a χ2-distribution. Monte Carlo simulations show
that the bias correction of the QMLE and of the test statistics also work well for finite sample
sizes.

1 Introduction

This paper studies a panel regression model where the individual fixed effects λi, called factor loadings,
interact with common time specific effects ft, called factors. This interactive fixed effect specification
contains the conventional fixed effects and time-specific effects as special cases, but is significantly
more flexible since it allows the factors ft to affect each individual with a different loading λi.

In the absence of regressors, the model becomes an approximate factor model, as introduced by
Chamberlain and Rothschild (1983) to study asset returns. Multifactor models in asset pricing are
motivated by no-arbitrage arguments (Ross, 1976), and can be very successful in explaining cross-
sectional variations of stock returns, e.g. Fama and French (1993). Additional regressors in these
models are introduced to account for firm-specific characteristics, see e.g Daniel and Titman (1997).

In macroeconomics, factor models are used to account for international or national shocks that
simultaneously affect multiple countries or multiple country specific variables. The diffusion index
forecast model of Stock and Watson (2002) (see also Bai and Ng (2006)), and the factor augmented
VAR of Bernanke, Boivin and Eliasz (2005) both describe the dynamics of the variables of interest
by a combination of unobserved factors and observed covariates. The interactive fixed effect model
examined in this paper can be viewed as a limited information version of these models, since no further
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assumptions on the dynamics of the covariates or of the factors are made. In this context it is crucial
that we allow for weakly exogenous regressors, like lagged dependent variables. Lagged dependent
variables are also important for microeconomic applications of the model. For example, Holtz-Eakin,
Newey, and Rosen (1988) use the interactive fixed effect specification to study the relationship between
wages and hours worked. There λi can describe the unobserved earnings abilities of individuals, while
ft can be interpreted as changes in local working conditions, or the macroeconomic state of the
economy.

In the present paper we study the (Gaussian) quasi likelihood function of the interactive fixed
effect model which is minimized over the parameters λi, ft, and the regression coefficients. The profile
quasi likelihood function of the model, in which λi and ft are already concentrated out, becomes the
sum of the T − R smallest eigenvalues of the sample covariance matrix of the panel, where T is the
cross-sectional size of the panel, and R is the number of factors.

The main contribution of the paper is to provide a general methodology to expand the profile quasi
likelihood function as a power series expansion in the regression parameters. In particular, we derive
the quadratic approximation which is necessary to establish the so-called first order asymptotic theory
of the QMLE and to work out the limits of the classical test statistics (Wald, LR and LM test).

The conventional likelihood expansion is done mostly by a Taylor approximation in the regression
coefficients. In our case this expansion is difficult to perform due to the implicit eigenvalue problem in
the profile quasi likelihood function. The analytic properties of this objective function are not known
in the literature so far. The approach we choose is to perform a joint expansion in the regression
parameters and in the idiosyncratic error terms. Using the perturbation theory of linear operators we
show that the profile quasi likelihood function is analytic in a neighborhood of the true parameter and
we obtain a formula of the expansion coefficients for all orders.

Our likelihood expansion is valid with a general type of regressors, in particular we allow for weakly
exogenous regressors and so called “low-rank” regressors, e.g. time-invariant and common regressors,
or interacted dummy variables. We also allow for time-serial and cross-sectional correlation and
heteroscedasticity of the idiosyncratic error terms. Our analysis uses the alternative asymptotic where
both the number of cross-sectional units N and the number of time periods T becomes large, which
was shown to be a convenient tool to characterize the asymptotic bias due to incidental parameter
problems, see e.g. Hahn and Kuersteiner (2002; 2004), Alvarez and Arellano (2003), Hahn and Newey
(2004), and Hahn and Moon (2006).

The quadratic likelihood expansion makes us understand the nature of the potential asymptotic
bias in the QMLE caused by the incidental parameters, λi and ft. This is possible because we know
the approximate score in a closed form. What we find is that there are two main sources that may
cause asymptotic bias. The first one is due to the presence of weakly exogenous regressors in either
time or cross-sectional direction. The second one is due to heteroscedasticity or correlation of the
idiosyncratic errors, again either in time or cross-sectional direction. These biases corresponds to the
well-know incidental parameter problem in the panel data literature (Neyman and Scott, 1948).

As applications of the likelihood expansion we investigate three problems: (i) deriving the asymp-
totic distribution of the QMLE with weakly exogenous regressors using the alternative asymptotic
N,T →∞, (ii) exploring the case where the true parameter is on the boundary of the parameter set,
and (iii) studying the characteristics of the three classical test statistics for testing a general linear
restriction on the regression parameters, again under the alternative asymptotic. The analysis of these
three applications is new in the literature on panel regression models with interactive fixed effects.

To obtain the limiting distribution of the QMLE we need to derive the asymptotic properties of
the approximated Hessian and of the approximated score, both known in explicit form from the profile
quasi likelihood expansion. Under the assumption of independent error terms (but allowing for het-
eroscedasticity) we show that the score (and thus the QMLE) converges to a normal distribution, and
we provide estimators for its asymptotic bias and covariance matrix, as well as for the probability limit
of the approximated Hessian. These estimators do not require knowledge on whether the regressors
are strictly or weakly exogenous. Using these estimators we construct a bias corrected QMLE. To
prove consistency of the estimators it is convenient to use the expansions of the regression residuals
and of the projectors of the estimated factors and factor loadings in the regression parameters. These
expansions are a byproduct of the perturbation theory that is used to derive the likelihood expansion,
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and they can be used whenever the factors and factor loadings are estimated by principal components
even if the regression parameters are not estimated by maximum likelihood.

The analysis of the QMLE as described so far is performed under the assumption that the true
parameter is an interior point of the parameter set. Combining our likelihood expansion with the
results in Andrews (1999) we derive the asymptotic QMLE distribution for situations where the true
parameter is on the boundary, given that the parameter set is locally approximated by a convex cone.
Under these assumptions we also define a “bias corrected” QMLE and show that its distribution is
the one that the QMLE would have for unbiased score function.

For testing a general linear hypothesis we consider the Wald, LR and LM tests. Knowing the limit
of the QMLE, the analysis of the Wald test is straightforward. However, for the asymptotics of the LR
and the LM tests, one needs to find the asymptotics of the likelihood and the score process. Again,
using the likelihood expansion, we are able to approximate the LR and the LM tests to show that
these tests are still asymptotically equivalent to the Wald test, but have a non-central χ2-distribution
due to the bias of the QMLE and of the score. Using our estimators for the asymptotic Hessian and
score bias we provide bias corrected versions of the three test statistics and show that their limiting
distribution is a χ2-distribution.

For estimation, this paper considers the QMLE. In the literature, various other estimation tech-
niques for interactive factor models are studied. Holtz-Eakin, Newey, and Rosen (1988) study a panel
regression model with factors and lagged dependent variables, i.e. they also allow for weakly exoge-
nous regressors. In their asymptotics T is fixed, i.e. the factors ft cause no incidental parameter
bias. To solve the incidental parameter problem for λi they estimate a quasi-differenced version of the
model using appropriated lagged variables as instruments. For small T their parameter estimates are
easy to obtain and are unbiased. However, implementing their method for large T is difficult since
one has to minimize a non-linear objective function (e.g. for GMM) over many parameters – since the
ft (or their quotients) are estimated jointly with the regression parameters. Thus, with respect to the
size of T the Holtz-Eakin, Newey, and Rosen (1988) method is complementary to our our approach,
since our asymptotic is accurate only for large T . The same is true for Ahn, Lee and Schmidt (2001),
who study the QMLE and a GMM estimator in fixed T asymptotic. To achieve consistency in this
asymptotic they have to assume that the regressors are iid distributed across individuals. Pesaran
(2006) discusses common correlated effect estimators for multi-factor models.

Regarding hypothesis testing, Holtz-Eakin, Newey, and Rosen (1988) show that the LR-test is
asymptotically χ2-distributed in their 2SLS estimation framework with fixed T . Bai and Ng (2004),
Moon and Perron (2004), and Phillips and Sul (2003) discuss various unit-root tests and derive their
limiting distribution for N,T →∞.

A paper that is closely related to our work is Bai (2009). He studies the QMLE for panel regression
models with interactive fixed effects, but assuming strictly exogenous regressors, and using a different
methodology to derive the asymptotic distribution. Bai starts from the first order condition of the
quasi likelihood maximization problem to derive the first order asymptotic theory of the QMLE. He
finds that under the alternative asymptotic and for strictly exogenous regressors the QMLE is biased
due to correlation and heteroscedasticity of the error terms. He gives consistent estimators for these
bias terms and for the QMLE covariance matrix, and thus provides a bias corrected estimator. He also
studies time-invariant and common regressors. Compared to our paper, Bai focuses on the properties
of the QMLE, while we first study the characteristics of the likelihood function by using our expansion
results from perturbation theory. This allows us to investigate situations where the true parameter
is on the boundary, and to study the limiting distribution of the LR and LM test. As opposed
to Bai, we allow for weakly exogenous regressors. This is important from an empirical viewpoint
because the weakly exogenous regressors can have feedback from the dependent variable. Also, from
a theoretical viewpoint it is important because the weakly exogenous regressors cause additional bias
terms. Our treatment of “low-rank regressors” is more general than Bai’s discussion since we allow
not only for time-invariant and common regressors, but for all kinds of “low-rank regressors”, e.g.
also for interacted dummy variables that appear in “difference in difference” estimation and that are
ruled out by Bai’s assumptions. In addition, we consider models were both “low-rank regressors” and
“high-rank regressors” are present simultaneously, while they are considered separately in Bai’s paper.

Both our analysis and the one of Bai (2009) share the restriction that the number of factors has
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to be known. For pure factors models, i.e. in the absence of regressors, there is a sizable literature
on how to estimate or test for the number of factors, see e.g. Bai and Ng (2002), and Onatski (2005).
Bai (2009) informally discusses how to consistently estimate the number of factors in the presence of
regressors. In this paper we do not address this issue.1

The paper is organized as follows. In the next section we introduce the interactive fixed effect
model and the QMLE of the regression parameters, and we provide a set of assumptions that are
sufficient to show consistency of the QMLE. In section 3 we present the expansion of the profile
quasi likelihood function in the regression parameters, give a general discussion of the asymptotic
bias of the QMLE, and also provide useful expansions of the regression residuals and of the principal
component projectors in the regression parameters. In section 4 we apply the likelihood expansion
to work out the asymptotic distribution of the QMLE. Under independent idiosyncratic error terms,
but allowing for heteroscedasticity and weakly exogenous regressors, we present estimators for the
different components of the asymptotic bias and thus provide a bias corrected QMLE. We also discuss
the limiting distribution of the QMLE when the true parameter is on the boundary of the parameter
set, and we work out the asymptotic distribution of the (bias corrected) classical test statistics. In
section 5 Monte Carlo simulation results for an AR(1) model with interactive fixed effect are presented.
The simulation show that the QMLE for the AR(1) coefficient is biased, and that the tests based on
it can have severe size distortions and power asymmetries, while the bias corrected QMLE and test
statistics have much better properties. In section 6 we conclude. All proofs of theorems and some
technical details have been moved to the appendix. Some parts of the proofs and some further technical
comments have been transferred to the supplementary material.2

A few words on notation. For a column vectors v its Euclidean norm is defined by ‖v‖ =
√
v′v .

For the n-th largest eigenvalues (counting multiple eigenvalues multiple times) of a symmetric matrix
B we write µn(B). For an m × n matrix A the Frobenius norm is ‖A‖F =

√
Tr(AA′), and the

operator norm is ‖A‖ = max06=v∈Rn
‖Av‖
‖v‖ , or equivalently ‖A‖ =

√
µ1(A′A). Furthermore, we use

PA = A(A′A)−1A′ and MA = I − A(A′A)−1A′, where I is the m ×m identity matrix, and (A′A)−1

denotes some generalized inverse if A is not of full column rank. For square matrices B, C, we use
B > C (or B ≥ C) to indicate that B−C is positive (semi) definite. For a positive definite symmetric
matrix A we write A1/2 and A−1/2 for the unique symmetric matrices that satisfy A1/2A1/2 = A
and A−1/2A−1/2 = A−1. We use ∇ for the gradient of a function, i.e. ∇f(x) is the row vector of
partial derivatives of f with respect to each component of x. We use “wpa1” for “with probability
approaching one”, and 1(.) for the indicator function.

2 Model, QMLE and Consistency

In this paper we study the following panel regression model with cross-sectional size N and T time
periods

Yit = β0′Xit + λ0′
i f

0
t + eit , i = 1 . . . N, t = 1 . . . T , (2.1)

where Xit is a K × 1 vector of observable regressors, β0 is a K × 1 vector of regression coefficients, λ0
i

is an R× 1 vector of unobserved factor loadings, f0
t is an R× 1 vector of unobserved common factors,

and eit are unobserved errors. The superscript zero indicates the true parameters. Throughout this
paper we assume that the true number of factors R is known.3

Model (2.1) can be written in matrix notation as

Y =
K∑
k=1

β0
kXk + λ0f0′ + e , (2.2)

1The discussion in Bai (2009) starts with the assertion of
√
NT -consistency of the QMLE of the regression parameters

even when only an upper bound on the number of factors is known. The proof of this claim is non-trivial and will be
the key for future research on estimating the number of factors in the presence of regressors.

2Which is available at http://www-rcf.usc.edu/∼moonr.
3Bai and Ng (2002) and Onatski (2005) provide methods to estimate the number of factors in pure factors models

but without a regressor.
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where Y , Xk and e are N × T matrices, λ0 is a N × R matrix, and f0 is a T × R matrix. The
(Gaussian) quasi likelihood function of the model reads

LNT (β, λ, f) =
1
NT

Tr

(Y − K∑
k=1

βkXk − λf ′
)′(

Y −
K∑
k=1

βkXk − λf ′
) . (2.3)

The estimator we consider in this paper is the QMLE that jointly minimizes LNT (β, λ, f) over β, λ
and f . Our main object of interest are the regression parameters β = (β1, ..., βK)′, whose QMLE is
given by

β̂ = argmin
β∈B

LNT (β) , (2.4)

where B ⊂ RK is a compact parameter set that contains the true parameter, i.e. β0 ∈ B,4 and the
objective function is the profile quasi likelihood function

LNT (β) = inf
λ,f
LNT (β, λ, f)

= inf
f

1
NT

Tr

(Y − K∑
k=1

βkXk

)
Mf

(
Y −

K∑
k=1

βkXk

)′
=

1
NT

T∑
t=R+1

µt

(Y − K∑
k=1

βkXk

)′(
Y −

K∑
k=1

βkXk

) . (2.5)

The first expression for LNT (β) is its definition as the the minimum value of LNT (β, λ, f) over λ and f .
This minimum is unique, but the minimizing parameters λ̂ and f̂ are not uniquely determined, since
LNT (β, λ, f) is invariant under transformations λ → λA and f → fA−1, where A is a non-singular
R×R matrix.

The second expression for LNT (β) in equation (2.5) is obtained form the first one by concentrating
out λ, i.e. by eliminating it from the objective function by use of its own first order condition.
Analogously, one can concentrate out f to obtain a formulation where only the parameter λ remains.
It turns out that the optimal f is obtained by combining the R eigenvectors that correspond to the R

largest eigenvalues of the T ×T matrix
(
Y −

∑K
k=1 βkXk

)′ (
Y −

∑K
k=1 βkXk

)
. From this follows the

third way to write the profile quasi likelihood function, namely as the sum over the T − R smallest
eigenvalues of this T×T matrix. This last expression for LNT (β) is our starting point when expanding
LNT (β) around β0, and it is also most convenient for numerical computations of the QMLE – at each
step of the numerical optimization over β one needs to calculate the eigenvalues of a T × T matrix,
which is much faster than minimizing over the high dimensional parameters λ and f .5 Theorem B.1
in the appendix shows equivalence of the three expressions for LNT (β) given above.

To show consistency of the QMLE β̂ of the interactive fixed effect model, and also later for our first
order asymptotic theory, we consider the limitN,T →∞, i.e. more precisely we want min(N,T )→∞,
but we allow for max(N,T ) to grow at a faster rate. In the following we present assumptions on Xk,
e, λ and f that guarantee consistency.6

Assumption 1. The probability limits of λ0′λ0/N and f0′f0/T are finite and have full rank, i.e.
(i) plimN,T→∞

(
λ0′λ0/N

)
> 0, (ii) plimN,T→∞

(
f0′f0/T

)
> 0.

4If there are multiple global minima in B we want β̂ to be one of them.
5For numerical purposes one should use the last expression in (2.5) if T is smaller than N . If T is larger than N one

should use the symmetry of the problem (N ↔ T , λ↔ f , Y ↔ Y ′, Xk ↔ X′k) and calculate LNT (β) as the sum over

the N −R smallest eigenvalues of the N ×N matrix
“
Y −

PK
k=1 βkXk

”“
Y −

PK
k=1 βkXk

”′
.

6In principle we should write X
(N,T )
k , e(N,T ), λ(N,T ) and f (N,T ), because all these matrices, and even their dimen-

sions, are functions on N and T , but we suppress this dependence throughout the paper.
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Assumption 2. (i) plimN,T→∞
[
(NT )−1Tr(Xk e

′)
]

= 0, (ii) plimN,T→∞
[
(NT )−1Tr(λ0 f0′e′)

]
= 0.

Assumption 3. The operator norm of the error matrix e grows at a rate smaller than
√
NT , i.e.

plimN,T→∞

(
‖e‖/
√
NT

)
= 0.

Assumption 1 guarantees that the matrices f0 and λ0 have full rank, i.e. that there are R distinct
factors and factor loadings asymptotically, and that the norm of each factor f0

,̇r and factor loading
λ0
,̇r grows at a rate of

√
T and

√
N , respectively. Assumption 2 demands that the regressors are

weakly exogenous and that the idiosyncratic errors are weakly independent from the factors and factor
loadings. Assumption 3 will be discussed in more detail in the next section. It is a regularity condition
on the the error term eit, and we give examples of error distributions that satisfy this condition in
appendix A. The final assumption needed for consistency is an assumption on the regressors Xk.

Assumption 4.

(a) We assume that the probability limit of the K × K matrix (NT )−1
∑
i,tXitX

′
it exists and is

positive definite, i.e. plimN,T→∞

[
(NT )−1

∑N
i=1

∑T
t=1 XitX

′
it

]
> 0.

(b) We assume that the K regressors can be decomposed into K1 low-rank regressors Xl, l =
1, . . . ,K1, and K2 = K − K1 high-rank regressors Xm, m = K1 + 1, . . . ,K. The two types
of regressors satisfy:

(i) Consider linear combinations Xhigh,α =
∑K
m=K1+1 αmXm of the high-rank regressors Xm

for K2-vectors7 α with ‖α‖ = 1. We assume that there exists a constant b > 0 such that

min
{α∈RK2 ,‖α‖=1}

N∑
i=2R+K1+1

µi

(
Xhigh,αX

′
high,α

NT

)
≥ b wpa1.

(ii) For the low-rank regressors we assume rank(Xl) = 1, l = 1, . . . ,K1, i.e. the they can
be written as Xl = wlv

′
l for N × 1 vectors wl and T × 1 vectors vl, and we define the

N ×K1 matrix w = (w1, . . . , wK1) and the T ×K1 matrix v = (v1, . . . , vK1). We assume
that there exists B > 0 (independent of N,T ) such that N−1 λ0′Mv λ

0 > B IR wpa1, and
T−1 f0′Mw f

0 > B IR wpa1.

The distinction between low-rank and high-rank regressors introduced in assumption 4 is essential
for showing consistency of the QMLE. The two most prominent examples of low-rank regressors are
time-invariant regressors, which satisfy Xl,it = Xl,iτ for all i, t, τ , and common (or cross-sectionally
invariant) regressors, which satisfy Xl,it = Xl,jt for all i, j, t. To give another example of a low-rank
regressor, let Di = 1(i ∈ A) and D̃t = 1(t ∈ B) be dummy variables that indicate whether individual i
is in A ⊂ {1, . . . , N} (group dummy), and whether t is in B ⊂ {1, . . . , T} (e.g. monthly dummy). The
interacted dummy variable Xl,it = DiD̃t then is a low-rank regressor, but is neither time-invariant
nor common. In these examples, and probably for the vast majority of applications, the low-rank
regressors all satisfy rank(Xl,it) = 1, as demanded in assumption 4. However, none of our conclusions
and proofs would be different if we allowed for low-rank regressors with rank larger than one as long
as their rank remains constant as N,T →∞.8

The appearance of the factors and factor loadings in the assumption on the low-rank regressors
is inevitable in order to guarantee consistency. For example, consider a low-rank regressor that is
cross-sectionally independent and proportional to the r’th unobserved factor, e.g. Xl,it = ftr. The
corresponding regression coefficient βl is then not identified, because the model is invariant under a

7The components of the K2-vector α are denoted by αK1+1 to αK .
8We would then have Xl = wlv

′
l, where wl is a N × rank(Xl) matrix, and vl is a T × rank(Xl). The definition of w

and v would remain the same, but they would be N × RX and T × RX matrices, where RX =
PK1
l=1 rank(Xl) is the

sum over the rank of all low-rank regressors. In addition, we would have to make a slight change in assumption 4(b)(i)

on the high-rank regressors, namely replacing K1 by RX , i.e. we would have
PN
i=2R+Rx+1.
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shift βl 7→ βl+a, λir 7→ λir−a, for an arbitrary a ∈ R. This phenomenon is well known from ordinary
fixed effect models, where the coefficients of time-invariant regressors are not identified. Assumption
4(b)(ii) therefore guarantees for Xl = wlv

′
l that wl is sufficiently different from λ0, and vl is sufficiently

different from f0.
High-rank regressor are those where their distribution guarantees that they have high rank (usually

full rank) asymptotically, for example Xm,it = 1 +Zit, where Zit ∼ iidN (0, 1). However, a high-rank
regressors may still have a significant “low-rank component”, e.g. Xm,it = 1 +Zit + λ0

irf
0
tr, where Zit

as above and λ0
ir and f0

tr are the r’th factor loading and factor.9

We can now state our consistency result for the QMLE.

Theorem 2.1. Let assumptions 1, 2, 3, 4 be satisfied, and let the parameter set B be compact. In the
limit N,T →∞ we then have

β̂ −→
p

β0 .

The proof of the theorem and of all theorems below can be found in the appendix. We assume
compactness of B to guarantee existence of the minimizing β̂. We also use boundedness of B in
the consistency proof, but only for those parameters βl, l = 1 . . .K1, that correspond to low-rank
regressors, i.e. if there are only high-rank regressors (K1 = 0) the compactness assumption can be
omitted, as long as existence of β̂ is guaranteed (e.g. for B = RK).

Bai (2009) also proves consistency of the QMLE of the interactive fixed effect model, but under
different assumptions on the regressors. He also employs, what we call assumptions 1 and 2, and he
uses a low-level version of assumption 3. He demands the regressors to be strictly exogenous, but for
his consistency proof this assumption is not used. Regarding consistency, the real difference between
our assumptions and his is the treatment of high- and low-rank regressors. He gives a condition on
the regressors (his assumption A) that rules out low-rank regressors, i.e. that works for the case of
only high-rank regressors. This condition still involves λ0, which we felt should better be avoided for
the high-rank regressors since λ0 is not observable (only for the low-rank regressors it is necessary
that λ0 and f0 appear in assumption 4). In a separate section Bai (2009) gives a condition on
the regressors (in his notation D(F 0) > 0) that is applicable in the case of only time-invariant and
common regressors, i.e. that does not guarantee consistency for high-rank regressors and for more
general low-rank regressors.10 In contrast, our assumption 4 allows for a combination of high- and low-
rank regressors, and for low-rank regressors that are more general than time-invariant and common
regressors.

3 Profile Quasi Likelihood Expansion

The last expression in equation (2.5) for the profile quasi likelihood function is on the one hand very
convenient because it does not involve any minimization over the parameters λ or f . On the other
hand, this does not seem like an expression that can be easily discussed by analytic means, because
in general there is no explicit formula for the n-th largest eigenvalue of a matrix. This complicates
the analysis of the asymptotic distribution of the QMLE using the conventional method that involves
Taylor approximation, because it is not straightforward how to compute derivatives in order to expand
LNT (β) around β0.

The key idea of this paper is to use the perturbation theory of linear operators to perform the
expansion of LNT (β) around β0. More precisely, we expand simultaneously in β and in the operator

9To give a brief explanation of the assumption on high-rank regressors, let the K2 × K2 matrix W̃ be defined by
W̃m1m2 = (NT )−1Tr(Xm1X

′
m2

). If the sum over the eigenvalues in assumption 4(b)(i) would run over all eigenvalues
i = 1 to N , it could be replaced by a trace, and the assumption would just be the conventional no-collinearity condition
plimN,T→∞ W̃ > 0. Assumption 4(b)(i) is stricter than that since the first 2R + K1 eigenvalues are omitted from
the sum. In particular, the matrix XmX′m for each high-rank regressors needs to have more than 2R + K1 non-zero
eigenvalues, i.e. high-rank regressors need to satisfy rank(Xm) > 2R+K1, which explains their name.

10In the supplementary material we give two examples that show that Bai’s condition D(F 0) > 0 does not guarantee
consistency in a more general case.
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norm of the error term e. Let the K + 1 expansion parameters be defined by ε0 = ‖e‖/
√
NT and

εk = β0
k − βk, k = 1, . . . ,K, and define the N × T matrix X0 = (

√
NT/‖e‖)e. With these definitions

we obtain

1√
NT

(
Y −

K∑
k=1

βkXk

)
=
λ0f0′
√
NT

+
K∑
κ=0

εk
Xκ√
NT

, (3.1)

and according to equation (2.5) the profile quasi likelihood function LNT (β) can be written as the
sum over the T − R smallest eigenvalues of this matrix multiplied with its transposed. We consider∑K
κ=0 εkXκ/

√
NT as a small perturbation of the unperturbed matrix λ0f0′/

√
NT . The goal is to

expand the profile quasi likelihood LNT = LNT (ε) in the perturbation parameters ε = (ε0, . . . , εK),
i.e. in a neighborhood of ε = 0 we want to write

LNT (ε) =
1
NT

∞∑
g=2

K∑
κ1=0

K∑
κ2=0

. . .

K∑
κg=0

εκ1 εκ2 . . . εκg L
(g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

)
, (3.2)

where L(g) = L(g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

)
are the expansion coefficients.

Note that the unperturbed matrix λ0f0′/
√
NT has rank R. Thus, the T −R smallest eigenvalues

of the unperturbed T × T matrix f0λ0′λ0f0′/NT are all zero, and due to assumption 1 on λ0 and
f0 we find that the R non-zero eigenvalues of this T × T matrix converge to positive constants as
N,T →∞. In more technical terms this means that the “separating distance” of the zero-eigenvalue
of the unperturbed T × T converges to a positive constant. Under this condition the perturbation
theory of linear operators guarantees that the above expansion of LNT in ε exists and is convergent as
long as the operator norm of the perturbation matrix

∑K
κ=0 εk

Xκ√
NT

is smaller than the convergence

radius r0(λ0, f0). For details, see Kato (1980) and appendix C. In the appendix the convergence
radius r0(λ0, f0) is defined and it is shown that under assumption 1 it converges to a positive constant
in probability as N,T →∞.

Thus, the above expansion of the profile quasi likelihood function is applicable whenever the
operator norm of the perturbation matrix

∑K
κ=0 εk

Xκ√
NT

is smaller than r0(λ0, f0). Fortunately, when

evaluated at a consistent estimator β = β̂ this is the case asymptotically. Note that ‖Xκ/
√
NT‖ =

Op(1) for κ = 0, . . . ,K. For κ = 0 this is true by definition, and for κ = k = 1, . . . ,K this is satisfied
due to assumption 4, namely we have ‖Xk‖ ≤ ‖Xk‖F = Op(

√
NT ). In addition, assumption 3

guarantees that ε0 →p 0, and for β = β̂ with β̂ →p β
0 we also have εk →p 0 for κ = k = 1, . . . ,K. Thus,

the operator norm of the perturbation converges to zero in probability if evaluated for a consistent
estimator of β. This shows how our assumption on the model play together to guarantee that the
above likelihood expansion is valid asymptotically.11

Perturbation theory (e.g. Kato (1980)) also provides an explicit formula for the expansion coeffi-
cients L(g). For example, L(1)

(
λ0, f0, Xκ

)
= 0, and L(2)

(
λ0, f0, Xκ1 , Xκ2

)
= Tr(Mλ0Xκ1Mf0X ′κ2

).
The general formula is given in theorem C.2 in the appendix. Using this formula one can derive the
following bound

1
NT

∣∣∣L(g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

)∣∣∣ ≤ aNT (bNT )g
‖Xκ1‖√
NT

‖Xκ2‖√
NT

. . .
‖Xκg‖√
NT

, (3.3)

where aNT and bNT are functions of λ0 and f0 that converge to finite positive constants in probability,
i.e. aNT →p a < ∞ and bNT →p b < ∞. This bound on the coefficients L(g) allows to work out a
bound on the remainder term, when the likelihood expansion is truncated at a particular order.

3.1 Quadratic Approximation of the Likelihood Function

The assumptions on the model made so far are sufficient to expand LNT (β) in (β−β0) and ‖e‖/
√
NT .

But in order to cut the expansion in ‖e‖/
√
NT at a finite order and be able to give a useful bound

on the remainder term, we need to strengthen assumption 3 slightly.
11Note that all we need for this result is assumptions 1 and 3, ‖Xk‖ = Op(

√
NT ), and consistency of β̂. However, in

order to achieve consistency of the QMLE we also have to impose assumptions 2 and 4.
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Assumption 3∗. We assume that there exists a deterministic ξNT and and a positive integer Ge such
that ‖e‖/

√
NT = Op(ξNT ), for some series ξNT that satisfies

√
NT (ξNT )Ge → 0 as N,T →∞.

Note that the value of the constant Ge not only depends on the distributional assumptions for the
error term eit, but also on the particular convergence scheme of N and T . For all examples of error
distributions given in appendix A we have ‖e‖ = Op(

√
max(N,T )), i.e. ξNT = min(N,T )−

1
2 . There

is a large literature that studies the asymptotic behavior of the operator norm of random matrices,
see e.g. German (1980), Silverstein (1989), Bai, Silverstein, Yin (1988), Yin, Bai, and Krishnaiah
(1988), and Latala (2005). Loosely speaking, we expect the result ‖e‖ = Op(

√
max(N,T )) to hold as

long as the errors eit have mean zero, uniformly bounded fourth moment, and weak time-serial and
cross-sectional correlation (in some well-defined sense, see the examples). Assuming this is satisfied
and considering the limit N,T → ∞ with N/T → κ2, 0 < κ < ∞, we find assumption 3∗ to be
satisfied with Ge = 3.

We can now present the quadratic approximation of the profile quasi likelihood function LNT (β).

Theorem 3.1. Let assumptions 1, 3∗, and 4(a) be satisfied with Ge ≥ 3. Then, the profile quasi
likelihood function satisfies LNT (β) = Lq,NT (β) + INT + (NT )−1RNT (β), where INT is independent
of β, the remainder RNT (β) is such that for any sequence ηNT → 0 we have

sup
{β:‖β−β0‖≤ηNT }

|RNT (β)|(
1 +
√
NT

∥∥β − β0
∥∥)2 = op (1) , (3.4)

and Lq,NT (β) is a second order polynomial in β, namely

Lq,NT (β) = (β − β0)′WNT (β − β0) − 2√
NT

(β − β0)′ CNT , (3.5)

with K × K matrix WNT = WNT (λ0, f0, X) defined by WNT,k1k2 = (NT )−1 Tr(Mf0 X ′k1 Mλ0 Xk2),
and K-vector CNT = CNT (λ0, f0, e,X) given by CNT,k =

∑Ge
g=2 C

(g)
(
λ0 , f0 , Xk e

)
. The general

formula for the coefficients C(g) is C(g)
(
λ0, f0, Xk, e

)
= g(4NT )−1/2 L(g)

(
λ0, f0, Xk, e, e, . . . , e

)
,

with L(g) defined in theorem C.2 of the appendix. For g = 2 and g = 3 we have

C(2)
(
λ0, f0, Xk, e

)
=

1√
NT

Tr(Mf0 e′Mλ0 Xk) ,

C(3)
(
λ0, f0, Xk, e

)
= − 1√

NT

[
Tr
(
eMf0 e′Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′)
+ Tr

(
e′Mλ0 eMf0 X ′k λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′)
+ Tr

(
e′Mλ0 XkMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′) ] . (3.6)

We refer to WNT and CNT as the approximated Hessian and the approximated score (at the true
parameter β0). The exact Hessian and the exact score (at the true parameter β0) contain higher order
expansion terms in e, but the expansion up the particular order above is sufficient to work out the
first order asymptotic theory of the QMLE.

Using the bound on the remainder RNT (β) given in equation (3.4), one cannot infer any properties
of the score function, i.e. of the gradient ∇LNT (β), because nothing is said about ∇RNT (β). The
following theorem gives a bound on ∇RNT (β) that is useful to derive the limiting distribution of the
Lagrange multiplier test in the application section below.

Theorem 3.2. Under the assumptions of theorem 3.1 and with WNT and CNT as defined there the
score function satisfies

∇LNT (β) = 2WNT (β − β0) − 2√
NT

CNT +
1
NT
∇RNT (β) ,
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where the remainder ∇RNT (β) satisfies for any sequence ηNT → 0

sup
{β:‖β−β0‖≤ηNT }

‖∇RNT (β)‖
√
NT

(
1 +
√
NT

∥∥β − β0
∥∥) = op (1) . (3.7)

3.2 Expansions of Projectors and Residuals

It is convenient to also have the asymptotic β-expansions of the projectors Mλ̂(β) and Mf̂ (β) that
correspond to the minimizing parameters λ̂(β) and f̂(β) in equation (2.5). Note that the minimizing
λ̂(β) and f̂(β) can be defined for all values of β, not only for the minimizing value β = β̂. The
corresponding residuals are defined by

ê(β) = Y −
K∑
k=1

βkXk − λ̂(β) f̂ ′(β) . (3.8)

Theorem 3.3. Under assumptions 1, 3, and 4(a) we have the following expansions

Mλ̂(β) = Mλ0 +M
(1)

λ̂,e
+M

(2)

λ̂,e
−

K∑
k=1

(
βk − β

0
k

)
M

(1)

λ̂,k
+M

(rem)

λ̂
(β) ,

Mf̂ (β) = Mf0 +M
(1)

f̂ ,e
+M

(2)

f̂ ,e
−

K∑
k=1

(
βk − β

0
k

)
M

(1)

f̂ ,k
+M

(rem)

f̂
(β) ,

ê(β) = Mλ0 eMf0 + ê(1)
e −

K∑
k=1

(
βk − β

0
k

)
ê

(1)
k + ê(rem)(β) , (3.9)

where the operator norms of the remainders satisfy for any series ηNT → 0

sup
{β:‖β−β0‖≤ηNT }

∥∥∥M (rem)

λ̂
(β)
∥∥∥

‖β − β0‖2 + (NT )−1/2 ‖e‖ ‖β − β0‖ + (NT )−3/2 ‖e‖3
= Op (1) ,

sup
{β:‖β−β0‖≤ηNT }

∥∥∥M (rem)

f̂
(β)
∥∥∥

‖β − β0‖2 + (NT )−1/2 ‖e‖ ‖β − β0‖ + (NT )−3/2 ‖e‖3
= Op (1) ,

sup
{β:‖β−β0‖≤ηNT }

∥∥ê(rem)(β)
∥∥

(NT )1/2‖β − β0‖2 + ‖e‖ ‖β − β0‖+ (NT )−1‖e‖3
= Op (1) , (3.10)

and we have rank(ê(rem)(β)) ≤ 7R, and the expansion coefficients are given by

M
(1)

λ̂,e
= −Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1λ0′ − λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0 ,

M
(1)

λ̂,k
= −Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1λ0′ − λ0 (λ0′λ0)−1 (f0′f0)−1 f0′X ′kMλ0 ,

M
(2)

λ̂,e
= Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1λ0′ e f0 (f0′f0)−1 (λ0′λ0)−1λ0′

+ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0

−Mλ0 eMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 (λ0′λ0)−1 λ0′

− λ0 (λ0′λ0)−1 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0 e′Mλ0

−Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0

+ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1λ0′ , (3.11)
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analogously

M
(1)

f̂ ,e
= −Mf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′ − f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0 ,

M
(1)

f̂ ,k
= −Mf0 X ′k λ

0 (λ0′λ0)−1 (f0′f0)−1f0′ − f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ εkMf0 ,

M
(2)

f̂ ,e
= Mf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′ e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′

+ f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ e f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0

−Mf0 e′Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1 (f0′f0)−1 f0′

− f0 (f0′f0)−1 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0 eMf0

−Mf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0

+ f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′ , (3.12)

and finally

ê
(1)
k = Mλ0 XkMf0 ,

ê(1)
e = −Mλ0 eMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′

− λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0 eMf0

−Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0 . (3.13)

In theorem C.2 of the appendix we give the general expansion of Mλ̂(β) up to arbitrary orders
in β and e. The general expansion of Mf̂ (β) can be obtained from the one for Mλ̂(β) by applying
symmetry (N ↔ T , λ↔ f , Y ↔ Y ′, Xk ↔ X ′k), and the general expansion for ê(β) can be obtained via

ê(β) = Mλ̂(β)
[
Y −

∑K
k=1 βkXk

]
, with Y given in equation (2.2). For most purposed the expansions

up to the finite orders given above should be sufficient.
Having expansions for Mλ̂(β) and Mf̂ (β) we also have expansions for Pλ̂(β) = IN −Mλ̂(β) and

Pf̂ (β) = IT −Mf̂ (β). The reason why we give expansions of the projectors and not expansions of λ̂(β)
and f̂(β) directly is that for the latter we would need to specify a normalization, while the projectors
are independent of any normalization choice. An expansion for λ̂(β) can for example be defined by
λ̂(β) = Pλ̂(β)λ0, in which case the normalization of λ̂(β) is implicitly defined by the normalization of
λ0.

These expansions are very useful. In the present paper we make use of them in the proof of theorem
4.4 below in order to derive the properties of the variance and bias estimates of the QMLE, i.e. of
objects that contain Mλ̂(β), Mf̂ (β), and ê. More generally, one can use these expansions in situations
where λ̂ and f̂ are still defined as principal components estimators, but where a different estimator
for β (not the QMLE) is used. For those alternative estimators the likelihood expansion in theorem
3.1 is irrelevant, but the expansions in theorem 3.3 are still applicable as long as principal components
are used to estimate factors and factor loadings.

3.3 Remarks
√
NT -consistency of the QMLE

The following corollary is the key for working out the asymptotic distribution of the QMLE.

Corollary 3.4. Under the assumptions of the theorems 2.1 and 3.1, and assuming that β0 is an
interior point of the parameter set B we have

√
NT

(
β̂k1 − β

0
k1

)
= W−1

NTCNT + op(1).

Having consistency of the QMLE and the expansion of the profile quasi likelihood function in theo-
rem 3.1, in particular the bound on the remainder term given there, one finds

√
NTWNT

(
β̂k1 − β

0
k1

)
=

CNT + op(1), see e.g. Andrews (1999). Alternatively, one can solve the first order conditions and use
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the bound on ∇RNT (β) in theorem 3.2 to obtain the same result. To obtain the above corollary one
needs in addition that WNT does not degenerate as N,T → ∞, i.e. the smallest eigenvalue of WNT

should by bounded by a positive constant. Our assumptions made so far already guarantee this, as
is shown in the supplementary material. The corollary shows that the QMLE β̂ is

√
NT -consistent if

CNT = Op(1).

Asymptotic Bias of the QMLE

Corollary 3.4 can be used to derive the limiting distribution of the QMLE β̂ under different distribu-
tional assumptions on λ0, f0, e, and Xk, and for different asymptotics T,N →∞. The restriction on e
and Xk made to derive the corollary still allow for very general cross-sectional and time-serial correla-
tion of the errors, and for very general weakly exogenous regressors. In order to actually compute the
limiting distribution of β̂ more specific assumptions on λ0, f0, e, and Xk have to me made, depending
on the particular application in mind. A concrete example of these more specific assumptions is given
in the application section below.

It is natural to assume that the approximated Hessian WNT converges to a constant matrix in
probability as N,T →∞, see also Bai (2009). Thus, according to corollary 3.4 the asymptotic distri-
bution of β̂ is up to a matrix multiplication given by the asymptotic distribution of the approximated
score CNT . Asymptotic bias of β̂ therefore corresponds to asymptotic bias of CNT , and we now give
an informal discussion of the different bias terms that can occur.

According to theorem 3.1 the approximated score is proportional to the sum over the terms
C(g)

(
λ0, f0, Xk, e

)
from g = 2 to Ge. In the following we restrict attention to the terms g = 2 and

g = 3, and discuss under what conditions these terms contribute an asymptotic bias to the QMLE.
As discussed previously, for ‖e‖ = Op(max(N,T )) and N/T → κ2, 0 < κ < ∞, asymptotically we
have Ge = 3, i.e. under these conditions higher order score terms do not contribute to the limiting
distribution of β̂. In the following, for expositional simplicity, λ0 and f0 are treated as non-stochastic.

We start with the discussion of the C(2) term. If the regressors Xk are strictly exogenous we have
E
[
C(2)

(
λ0, f0, Xk, e

)]
= 0, i.e. no asymptotic bias originates from C(2) in this case. However, if the

regressors are weakly exogenous we have12

E
[
C(2)

(
λ0, f0, Xk, e

)]
=−

√
N

T
Tr
[
Pf0E

(
1
N
e′Xk

)]
−
√
T

N
Tr
[
Pλ0 E

(
1
T
eX ′k

)]
+ o(1)

=−
√
N

T

T∑
t=1

T∑
τ=1

Pf0,tτ
1
N

N∑
i=1

E (eitXk,iτ )

−
√
T

N

N∑
i=1

N∑
j=1

Pλ0,ij

1
T

T∑
t=1

E (eitXk,jt) + o(1) . (3.14)

The first bias term we find here is non-zero if E (eitXk,iτ ) 6= 0 for t > τ , i.e. if the past innovation
eit, or equivalently the past Yit, influences the future regressors Xk,iτ . This bias term would also be
present if the factors f0 would be observed. In the special case of only one factor which is observed
to be f0

i = 1 the QMLE becomes just the within-group estimator for the fixed effect model. For this
special case the above bias term was first derived by Nickell (1981). We have given the generalization
of this bias for more general f0, and we have shown that the same bias term is present if the factors
are unobserved and estimated jointly with the regression coefficients.

The second bias term we find here is non-zero if E (eitXk,jt) 6= 0. This bias term would be relevant
in applications in which one allows for spatial correlation, for example, when the dependent variable
Yit for unit i appears as a regressors in the equation for Yjt of unit j 6= i.13

12Here we assumed that E
h
(NT )−1/2Tr(Pf0 e′ Pλ0 Xk)

i
= o(1), which can be shown to be true under additional

assumptions on e and Xk, and for N and T growing at the same rate, see section 4.1.
13For this to be consistent with weak exogeneity we need a partial ordering on the cross-sectional labels so that Yit

only appears in the equation for Yjt if i > j according to this ordering.
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For the discussion of the C(3) terms, we assume for simplicity that the regressors Xk are strictly
exogenous and non-stochastic. We then have14

E
[
C(3)

(
λ0, f0, Xk, e

)]
= −

√
T

N
Tr
[
λ0′E

(
1
T
e e′
)
Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1

]
−
√
N

T
Tr
[
f0′E

(
1
N
e′ e

)
Mf0 X ′k λ

0 (λ0′λ0)−1 (f0′f0)−1

]
+ o(1) .

(3.15)

These are the two bias terms that were already found by Bai (2009). For error terms eit that are
cross-sectionally independent and homoscedastic we have E

(
T−1 e e′

)
= IN , and the first bias term

in equation (3.15) then is zero since λ0′Mλ0 = 0. However, under cross-sectional correlation or
heteroscedasticity of eit this bias term is non-zero. Analogously, for errors eit that are time-serial
independent and homoscedastic we have E

(
N−1 e′ e

)
= IT , i.e. the second bias term in equation

(3.15) is zero. This term contributes asymptotic bias to the QMLE only under time-serial correlation
or heteroscedasticity.

Thus, if eit is iid across i and t we expect no asymptotic bias from the C(3) terms (this is true even
if regressors are not strictly exogenous), but there may still be asymptotic bias from the C(2) term
due to weak exogeneity.

4 Applications of the Likelihood Expansion

4.1 Asymptotic Distribution and Bias Correction of the QMLE

In this subsection we apply corollary 3.4 to work out the asymptotic distribution of the QMLE β̂, and
to correct for the asymptotic bias. For this purpose we need more specific assumptions on λ0, f0, Xk

and e. These additional specifications can be made differently, depending on the particular empirical
application one has in mind.

Assumption 5.

(i) In addition to assumption 1 on λ0 and f0 we assume that ‖λ0
i ‖ and ‖f0

t ‖ are uniformly bounded
across i, t and N,T .

(ii) The errors eit are independent across i and t, they satisfy Eeit = 0, and the eighth moment Ee8
it

is bounded uniformly across i, t and N,T .

(iii) In addition to assumption 4, we assume that the regressors Xk, k = 1, . . . ,K, can be decomposed
as Xk = Xstr

k + Xweak
k . The component Xstr

k is strictly exogenous, i.e. Xstr
k,it is independent of

ejτ for all i, j, t, τ . The component Xweak
k is weakly exogenous and we assume

Xweak
k,it =

t−1∑
τ=1

ck,iτ ei,t−τ , (4.1)

for some coefficients ck,iτ that satisfy

|ck,iτ | < ατ , (4.2)

where α ∈ (0, 1) is a constant that is independent of τ = 1 . . . , T −1, k = 1 . . .K and i = 1 . . . N .
We also assume that E(Xstr

k,it)
8+ε is bounded uniformly over i, t and N,T , for some ε > 0.

14Here we assume that Tr
“
ePf0 e′Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′
”

= op(1),

Tr
“
e′Pλ0 eMf0 X′k λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′
”

= op(1), and Tr
“
e′Mλ0 XkMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′

”
=

op(1). In the application section below we give an example of low-level assumptions on e and Xk under which
this is true. In general, the above equations are satisfied as soon as one can show that ‖Pλ0ePλ0‖ = Op(1), and

‖Pλ0eX′k‖ = Op(
√
NT ).
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(iv) We consider a limit N,T →∞ with N/T → κ2, where 0 < κ <∞.

Assumption 5(i) is needed in order to calculate probability limits of expressions that involve λ0

and f0. One could weaken this assumption and only ask for existence and boundedness of some
higher moments of λ0

i and f0
t , but the assumptions as it is now is very convenient from a theoretical

perspective, e.g. it guarantees that Pf0,tτ is of order 1/T uniformly across t, τ and T .
Assumption 5(ii) requires cross-sectional and time-serial independence of eit, but heteroscedasticity

in both directions is still allowed, i.e. we still expect an asymptotic bias of the QMLE due to the
C(3) term. In the supplementary material we show that assumption 5(ii) guarantees that ‖e‖ =
Op(max(N,T )), i.e. for the asymptotics N,T → ∞ that is specified in assumption 5(iv) we find
assumption 3∗ to be satisfied with Ge = 3. Assumption 2 is also satisfied as a consequence of
assumption 5, i.e. assumption 5 guarantees that our quadratic expansion of the profile quasi likelihood
function is applicable.

Assumption 5(iii) requires that the regressors Xk are additively separable into a strictly and a
weakly exogenous component and assumes that the weakly exogenous component can be written as
an MA(∞) process with innovation eit.15 An example where this is satisfied is if the interactive fixed
effect model is one equation of a vector auto-regression for each cross-sectional unit, e.g. for the
VAR(1) case we would have(

Yit
Zit

)
= B

(
Yi,t−1

Zi,t−1

)
+
(
λ0′
i f

0
t

dit

)
+
(

1 0
Γ I

)(
eit
uit

)
, (4.3)

where Zit is an r×1 vector of additional variables, B is an (r+1)×(r+1) matrix of parameters, the r×1
vectors dit and uit are independent of eit, and Γ is an r×r covariance matrix. Here we already applied
a Cholesky decomposition to the general form of the innovation of a VAR model in order to single our
the shocks eit that are genuine to Yit.16 The first row in equation (4.3) is our interactive factor model
with regressors Yi,t−1 and Zi,t−1, and due to the structure of the VAR process these regressors have
a decomposition into strictly and weakly exogenous regressors as demanded in assumption 5(iii). The
generalization of this example to VAR processes of higher order is straightforward.

The following condition guarantees that the limiting variance and the asymptotic bias converge to
constant values.

Assumption 6. Let Xk = Mλ0 Xstr
k Mf0 + Xweak

k and for each i, t define the K-vector Xit =
(X1,it, . . . ,XK,it)′. The K × K matrices W and Ω, and the K-vectors B1, B2 and B3, are defined
below, and we assume that they exist:

W = plim
N,T→∞

1
NT

N∑
i=1

T∑
t=1

Xit X
′
it ,

Ω = plim
N,T→∞

1
NT

N∑
i=1

T∑
t=1

E
[
e2
it Xit X

′
it

]
,

B1,k = plim
N,T→∞

1
N

Tr
[
Pf0E

(
e′Xweak

k

)]
,

B2,k = plim
N,T→∞

1
T

Tr
[
E (ee′) Mλ0 Xstr

k f0 (f0′f0)−1 (λ0′λ0)−1 λ0′] ,
B3,k = plim

N,T→∞

1
N

Tr
[
E (e′e) Mf0 Xstr ′

k λ0 (λ0′λ0)−1 (f0′f0)−1 f0′] . (4.4)

15Actually, Xweak
k is only a truncated MA(∞) process, because it only depends on eit for i ≥ 1, but not on eit

for i ≤ 0. However, one can define the decomposition Xk = X̃weak
k + X̃str

k where X̃weak
k =

P∞
τ=1 ck,iτ ei,t−τ is a

non-truncated MA(∞) process with innovation eit, and X̃str
k = Xstr

k −
P∞
τ=t ck,iτ ei,t−τ is still strictly exogenous.

16To guarantee independence (not merely uncorrelatetness) of eit and uit one has to assume normally distributed
errors in this example.
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Theorem 4.1. Let assumptions 5 and 6 be satisfied, and let the true parameter β0 be an interior
point of the compact parameter set B. Then we have

√
NT

(
β̂ − β0

)
→
d
N
(
W−1B, W−1 ΩW−1

)
, (4.5)

where B = −κB1 − κ−1B2 − κB3.

From corollary 3.4 we already know that the limiting distribution of β̂ is given by the limiting
distribution of W−1

NTCNT . To prove theorem 4.1 one first has to show that W = plimN,T→∞WNT .
We could have defined W this way, but the definition given in assumption 6 is equivalent, although
the equivalence is non-trivial since in Xk the weakly exogenous part is not projected with Mf0 and
Mλ0 . The intuition here is that since by assumption Xweak

k is uncorrelated with λ0 and f0 it does not
matter whether the corresponding subspaces (of fixed dimension) are projected out of Xweak

k (whose
dimension grows to infinity). For the strictly exogenous part of the regressors this is different, because
Xstr
k can be correlated with λ0 and f0, and may have a significant part that is proportional to λ0 and

f0 and that is projected out by Mf0 and Mλ0 . For later applications the definition of W given in
assumption 6 may be easier to evaluate (e.g. in a lagged dependent variable model we have Xstr

k = 0.)
Note that assumption 4 guarantees that W is positive definite.

The second step in proving the theorem is to show that the approximated score at the true pa-
rameter satisfies CNT →d N (B,Ω). The asymptotic variance Ω and the asymptotic bias B1 originate
exclusively from the C(2) term. The strictly exogenous part of the regressors only contributes to the
asymptotic variance, but the weakly exogenous part contributes to both, namely to the asymptotic
variance via the term Tr(e′Xweak

k ) and to the bias B1 via the term Tr(Pf0 e′Xweak
k ). The bias B1 is

due to correlation of the errors eit and the regressors Xk,iτ in the time direction (for τ > t). In section
3.3 we also discussed a bias due to correlation of errors and regressors in the cross-sectional dimension,
but here we assume cross-sectional independence, i.e. this second type of bias is not present.

The three C(3) terms contribute no variance, i.e. they converge to constants in probability. One
C(3) term is vanishing, an the other two contribute the asymptotic biases B2 and B3 that are due
to cross-sectional and time-serial heteroscedasticity. Note that the weakly exogenous part of the
regressors does not contribute to B2 and B3.

In order to express our estimators for asymptotic bias and asymptotic variance we first have to
introduce some notation.

Definition 4.2. Let ηi and ηt be the N and T dimensional unit column vectors that have unity at
position i and t, respectively, and zeros everywhere else. Let Γ(.) be the truncation Kernel defined by
Γ(x) = 1 for ‖x‖ ≤ 1, and Γ(x) = 0 otherwise. Let M be a bandwidth parameter that depends on N
and T . For an N ×N matrix A and a T × T matrix B we define

(i) the diagonal truncation AtruncD =
∑N
i=1 ηi η

′
iAηi η

′
i, B

truncD =
∑T
t=1 ηt η

′
tB ηt η

′
t.

(ii) the right-sided and left-sided Kernel truncation BtruncR =
∑T−1
t=1

∑T
τ=t+1 Γ

(
t−τ
M

)
ηt η
′
tB ητ η

′
τ ,

BtruncL =
∑T
t=2

∑t−1
τ=1 Γ

(
t−τ
M

)
ηt η
′
tB ητ η

′
τ .

We now define our estimators for W , Ω, B1, B2 and B3.

Definition 4.3. Let X̂k(β) = Mλ̂(β)XkMf̂ (β), and for each i, t define the K-vector X̂it(β) =
(X̂1,it(β), . . . , X̂K,it(β))′. We define the K ×K matrices Ŵ (β) and Ω̂(β), and the K-vectors B̂1(β),
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B̂2(β), B̂3(β) and B̂(β) as follows

Ŵ (β) =
1
NT

N∑
i=1

T∑
t=1

X̂it X̂
′
it ,

Ω̂(β) =
1
NT

N∑
i=1

T∑
t=1

ê2
it X̂it X̂

′
it ,

B̂1,k(β) =
1
N

Tr
[
Pf̂ (ê′Xk)truncR

]
,

B̂2,k(β) =
1
T

Tr
[
(ê ê′)truncD

Mλ̂Xk f̂ (f̂ ′f̂)−1 (λ̂
′
λ̂)−1 λ̂

′]
,

B̂3,k(β) =
1
N

Tr
[
(ê′ ê)truncD

Mf̂ X
′
k λ̂ (λ̂

′
λ̂)−1 (f̂ ′f̂)−1 f̂ ′

]
,

B̂(β) = −
√
N

T
B̂1,k(β)−

√
T

N
B̂2,k(β)−

√
N

T
B̂3,k(β) , (4.6)

where we suppressed the β-dependence of X, ê, f̂ , and λ̂ on the right hand side.17 18

The estimators above are dependent on β, since one needs an estimator for β in order to obtain
the residuals ê and the estimators for the factors and factor loadings.

Theorem 4.4. Under assumptions 5 and 6, for M →∞ and M5/T → 0, and for any
√
NT -consistent

estimator β̂ = β0 +Op((NT )−1/2) we have Ŵ (β̂) = W +op(1), Ω̂(β̂) = Ω+op(1), B̂1(β̂) = B1 +op(1),
B̂2(β̂) = B2 + op(1), and B̂3(β̂) = B3 + op(1).

Note that the assumption M5/T → 0 can be relaxed if additional higher moment restrictions on eit
and Xk,it are imposed. Note also that for the construction of the estimators Ŵ , Ω̂, and B̂i, i = 1, 2, 3,
it is not necessary to know whether the regressors are strictly exogenous or weakly exogenous, in
both cases the estimators for W , Ω, and Bi, i = 1, 2, 3, are consistent. We can now present our bias
corrected estimator and its limiting distribution.

Corollary 4.5. Under assumptions 5 and 6, for β0 being an interior point of the compact parameter
set B, and for M →∞ and M5/T → 0 we find that the bias corrected QMLE

β̂
∗

= β̂ + Ŵ−1(β̂)
(
T−1B̂1(β̂) +N−1B̂2(β̂) + T−1B̂3(β̂)

)
satisfies

√
NT

(
β̂
∗
− β0

)
→d N

(
0, W−1 ΩW−1

)
.

According to theorem 4.4, a consistent estimator of the asymptotic variance of β̂
∗

is given by
Ŵ−1(β̂) Ω̂(β̂) Ŵ−1(β̂).

4.2 Asymptotic Distribution when the True Parameter is on the Boundary

In corollary 4.5 we gave a bias corrected estimator β̂
∗

and its limiting distribution under the assumption
that β0 is an interior point of the parameter set B, i.e. when there are no local parameter restriction
on β. In the present subsection we discuss situations where β0 is on the boundary of B, i.e. when local
parameter restrictions are present. In this case, one can use the result of Andrews (1999) to obtain the
limiting distribution of the QMLE, once the quadratic expansion of the profile quasi likelihood function
is obtained and the limiting distribution of the approximated score and Hessian are derived, and it
is not difficult to apply Andrews’ method also to derive the limiting distribution of an appropriately
defined “bias corrected” QMLE. The following assumption will be used in this subsection and in the
next one.

17Here f̂(β) and λ̂(β) are the principal component estimators defined above, and ê(β) are the corresponding residuals
defined in equation (3.8).

18If there is serial correlation in eit, one can replace truncD in B̂3,k(β) by truncK, which is a Kernel truncation on

the first few center diagonals of a T × T matrix A, i.e. AtruncK =
PT
t=1

PT
τ=1 Γ

`
t−τ
M

´
ηt η
′
t Aητ η

′
τ .
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Assumption 7.

(i) We have a scalar objective function LNT (β) that is used to estimate the parameter β ∈ B ⊂ RK ,
whose true value β0 ∈ B. We assume that the objective function has an asymptotic quadratic
expansion of the form LNT (β) = Lq,NT (β) + INT + 1

NT RNT (β), where INT is independent
of β, the remainder RNT (β) satisfies the condition in equation (3.4), and Lq,NT (β) = (β −
β0)′WNT (β − β0) − 2 (NT )−1/2 (β − β0)′ CNT is a second order polynomial.

(ii) We consider a limit N,T →∞, which may satisfy additional restrictions (e.g. N/T → const.).
For this asymptotics, we assume that there exist positive definite K ×K matrices Ω and W and
a K-vector B such that the approximated Hessian WNT and the approximated score CNT satisfy
WNT →pW , and CNT →d C, where C ∼ N (B,Ω).

(iii) We assume that the estimator β̂ that minimizes LNT (β) subject to β ∈ B is consistent for β0.

(iv) We have estimators Ŵ (β), Ω̂(β) and B̂(β) that are consistent for W , Ω and B when evaluated
for any

√
NT -consistent estimator of β0.

Assumption 7 can be satisfied in the interactive fixed effect model for different estimators of W ,
Ω and B, and under different assumptions on λ0, f0, Xk and e. In the last subsection we presented
a concrete example for which the assumption holds, namely for the estimators in definition 4.3, and
under the assumptions of corollary 4.5, but for assumption 7 to be satisfied it is not necessary that
β0 is an interior point of B.

In this section we want to discuss the limiting distribution of the QMLE for cases where β0 is on
the boundary of the parameter set B. More specifically, we consider the case where B− β0 is locally
approximated by a convex cone Λ ⊂ RK .19

When β0 is on the boundary of the parameter set it is not guaranteed that the bias corrected
estimator β̂

∗
defined in corollary 4.5 satisfies β̂

∗
∈ B asymptotically. We therefore define an alternative

“bias corrected” estimator by

β̂
∗∗

= argmin
β∈B

L∗∗NT (β) , L∗∗NT (β) = LNT

[
β + (NT )−1/2 Ŵ−1(β̂) B̂(β̂)

]
, (4.7)

where β̂ is the QMLE that minimizes LNT (β) subject to β ∈ B, i.e. β̂
∗∗

is defined by a two-step
minimization procedure. The estimator β̂

∗∗
is bias corrected in the sense that its limiting distribution

is the one that the QMLE β̂ would have if the asymptotic bias of the score would be vanishing, i.e. if
B = 0. However, β̂

∗∗
usually has an asymptotic bias since its limiting distribution is a projection (or

truncation) of a multivariate normal distribution, as described in the theorem below.
In order to describe the limiting distributions of β̂ and β̂

∗∗
it is convenient to introduce the

function lq(φ) = φ′Wφ− 2φ′C for φ ∈ RK . For all φ ∈ RK we find that under assumption 7 we have
NT

[
LNT (βNT )− LNT (β0)

]
→d lq(φ) for βNT = β0 + (NT )−1/2φ. Thus, lq(φ) is the limit of the

appropriately rescaled profile quasi likelihood function when holding φ =
√
NT (β − β0) fixed.

Theorem 4.6. Let assumption 7 be satisfied and let B−β0 be locally approximated by a closed convex
cone Λ ⊂ RK . Define the random variables Φ = argminφ∈Λ lq(φ), and Φ∗∗ = argminφ∈Λ lq(φ+W−1B).

19We refer to Andrews (1999) for the definition of “locally approximated”. A special case is when B − β0 is locally
equal to a cone Λ ⊂ RK , i.e. if there exists ε > 0 such that B(0, ε) ∩ (B − β0) = B(0, ε) ∩ Λ, where B(0, ε) is the ball
with radius ε around the origin. Remember that Λ ⊂ RK is a cone iff az ∈ Λ for every a > 0 and z ∈ Λ, i.e. it is
invariant under rescalings with positive scaling factor that are centered at the origin. Whenever β0 ∈ B and B is defined
by equality and inequality constraints on linear combinations of β we find that B− β0 is locally equal to a convex cone.
Under non-linear equality and inequality constraints one usually finds B− β0 is locally approximated by a convex cone
Λ ⊂ RK .
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Then
√
NT

(
β̂ − β0

)
→
d

Φ ,

√
NT

(
β̂
∗∗
− β0

)
→
d

Φ∗∗ ,

NT
[
LNT

(
β̂
)
− LNT

(
β0
)]
→
d
lq(Φ) ,

NT
[
L∗∗NT

(
β̂
∗∗)
− L∗∗NT

(
β0
)]
→
d
lq(Φ∗∗ +W−1B)− lq(W−1B) .

Theorem 4.6 is a special case of theorem 3 in Andrews (1999). Although Andrews does not explicitly
consider bias correction, it is easy to check that both objective functions LNT (β) and L∗∗NT (β) satisfy
the assumptions necessary to apply Andrews’ theorem for the limiting distributions.

By writing the limiting distribution of the approximated score as C = B+ Ω1/2ZK , where ZK is a
K-dimensional standard normal distribution, we can give slightly more explicit expressions for Φ and
Φ∗∗, namely

Φ = argmin
φ∈Λ

[
φ−W−1(B + Ω1/2ZK)

]′
W
[
φ−W−1(B + Ω1/2ZK)

]
,

Φ∗∗ = argmin
φ∈Λ

[
φ−W−1Ω1/2ZK

]′
W
[
φ−W−1Ω1/2ZK

]
. (4.8)

Thus, the asymptotic distribution of
√
NT (β̂ − β0) is given by the orthogonal projection (relative to

the metric W ) of W−1(B + Ω1/2ZK) ∼ N (W−1B, W−1ΩW−1) onto the cone Λ. For interior points
of Λ the distribution of

√
NT (β̂ − β0) is the same as for N (W−1B, W−1ΩW−1), but for a point on

the boundary of Λ the distribution is given by an integral over those points that are projected on this
point. The distribution for

√
NT (β̂

∗∗
− β0) is given by almost the same formula, but without bias B.

In the one-dimensional case (K = 1) the only non-trivial closed cones are Λ = [0,∞) and Λ = (−∞, 0],
i.e. the distributions of

√
NT (β̂ − β0) and

√
NT (β̂

∗∗
− β0) are truncated normal distributions.

4.3 Testing restriction on β0

For our interactive fixed effect model, we now want to discuss the three classical test statistics for
testing a general linear restriction on β0, i.e. the null-hypothesis is H0 : Hβ0 = h, and the alternative
is Ha : Hβ0 6= h, where H is a r×K matrix of rank r ≤ K, and h is a r× 1 vector. Throughout this
subsection we assume that β0 is an interior point of B, i.e. there are no local restrictions on β as long
as the null-hypothesis is not imposed.

For ease of exposition we restrict the presentation to testing a linear hypothesis, but using the
tools provided above one can generalize the discussion to the testing of non-linear hypotheses. Using
the expansion LNT (β) one could also discuss testing when the true parameter is on the boundary, as
shown in Andrews (2001).

The unrestricted and restricted estimators are defined by

β̂ = argmin
β∈B

LNT (β) , β̃ = argmin
β∈B̃

LNT (β) , (4.9)

where B̃ = {β ∈ B|Hβ = h} is the restricted parameter set.
Under assumption 7 the limiting distribution of the restricted and unrestricted estimator is given

by
√
NT

(
β̂ − β0

)
−→
d
N
(
W−1B, W−1 ΩW−1

)
,
√
NT (β̃ − β0) −→

d
N
(
W−1B, W−1 Ω W−1

)
,

(4.10)

where W−1 = W−1 −W−1H ′(HW−1H ′)−1HW−1.20

20TheK×K covariance matrix in the limiting distribution of β̃ is not full rank, but satisfies rank(W−1 Ω W−1) = K−r,
because HW−1 = 0. The asymptotic distribution of

√
NT (β̃ − β0) is therefore K − r dimensional.
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For the unrestricted estimator this result was given in theorem 4.1 for a specific set of assumptions
on λ0, f0, Xk and e, but it holds whenever assumption 7 is satisfied.21 For the restricted estimator
we note that B̃− β0 is locally equal to the r-dimensional subspace Λ = {φ ∈ RK |Hφ = 0}, which is a
special case of a convex cone, i.e. we can apply theorem 4.6 to obtain the limiting distribution of β̃.22

Wald Test

Using the results above we find that under the null-hypothesis
√
NT

(
Hβ̂ − h

)
is asymptotically

distributed as N
(
HW−1B, HW−1 ΩW−1H ′

)
. Thus, due to the presence of the bias B, the standard

Wald test statistics WDNT = NT
(
Hβ̂ − h

)′ (
HŴ−1 Ω̂ Ŵ−1H ′

)−1 (
Hβ̂ − h

)
is not asymptotically

χ2
r distributed. Using our estimator for the bias it is natural to define the bias corrected Wald test

statistics as

WD∗NT =
[√

NT
(
Hβ̂ − h

)
−HŴ−1B̂

]′ (
HŴ−1 Ω̂ Ŵ−1H ′

)−1 [√
NT

(
Hβ̂ − h

)
−HŴ−1B̂

]
,

(4.11)

and under the null hypothesis we find WD∗NT →d χ
2
r if assumption 7 is satisfied. Here we used

B̂ = B̂(β̂), Ŵ = Ŵ (β̂), and Ω̂ = Ω̂(β̂).

Likelihood Ratio Test

For the discussion of the LR test we have to assume that Ω = cW for some scalar constant c > 0,
and that we have a consistent estimator ĉ for c. This condition is satisfied in our interactive fixed
effect model if assumptions 5 and 6 hold, and if Ee2

it = c, i.e. if there is no heteroscedasticity. A
consistent estimator for c in this context is ĉ = (NT )−1

∑N
i=1

∑T
t=1 ê

2
it, where ê = ê(β̂), and since the

likelihood function for the interactive fixed effect model is just the sum of squared residuals we have
ĉ = LNT

(
β̂
)

. However, different estimators for c can be used.
The likelihood ratio test statistics is defined by

LRNT = ĉ−1NT
[
LNT

(
β̃
)
− LNT

(
β̂
)]

. (4.12)

Applying theorem 4.6 we find that under assumption 7 we have

LRNT −→
d

c−1
[
l(Φ̃)− l(Φ)

]
= c−1

[
l(W−1C)− l(W−1C)

]
= c−1C ′W−1H ′(HW−1H ′)−1HW−1C . (4.13)

This is the same limiting distribution that one finds for the Wald test under Ω = cW (in fact, one
can show WDNT = LRNT + op(1)), i.e. we need to do a bias correction for the LR test in order to
achieve a χ2 limiting distribution.

It is natural to base the bias corrected LR test on the objective function L∗∗NT used above to define
the biased corrected estimator β∗∗. Thus, we define

LR∗NT = ĉ−1NT

[
min

{β∈B|Hβ=h}
LNT

(
β + (NT )−1/2Ŵ−1B̂

)
−min

β∈B
LNT

(
β + (NT )−1/2Ŵ−1B̂

)]
,

(4.14)

21The unrestricted case is the special case of theorem 4.6, namely Λ = RK , i.e. Φ = W−1C.
22One finds

√
NT (β̃ − β0) →d Φ̃, with Φ̃ = argminΛ lq(φ) = MW,H′W

−1C = W−1C, where MW,H′ = IK −
W−1H′(HW−1H′)−1H is the orthogonal projector onto the subspace Λ with respect to the metric W . One can easily
check that the projector MW,H′ as given here has all the required properties, namely HMW,H′ = 0 (thus, (MW,H′φ) ∈ Λ

for all φ ∈ RK), (MW,H′ )
2 = MW,H′ (idempotence), Tr(MW,H′ ) = K − r (projector on K − r dimensional subspace),

and M ′
W,H′W (IK −MW,H′ ) = 0 (orthogonality wrt to W ). Note that MW,H′ = MH′ if W = IK .
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where B̂ = B̂(β̂) and Ŵ = Ŵ (β̂) do not depend on the parameter β in the minimization problem.23

Asymptotically we have minβ∈B LNT

(
β + (NT )−1/2Ŵ−1B̂

)
= LNT (β̂), because β ∈ B does not

impose local constraints, i.e. close to β0 it does not matter for the value of the minimum whether one
minimizes over β or over β+(NT )−1/2Ŵ−1B̂. The correction to the LR test therefore originates from
the first term in LR∗NT . For the minimization over the restricted parameter set it matters whether the
argument of LNT is β or β + (NT )−1/2Ŵ−1B̂, because generically we have HW−1B 6= 0 (otherwise
no correction would be necessary for the LR statistics).

Using theorem 4.6 one finds

LR∗NT −→
d

c−1

[
min

{φ∈RK |Hφ=0}
l
(
φ+W−1B

)
− l (Φ)

]
= c−1

[
l
(
W−1(C −B) +W−1B

)
− l
(
W−1C

)]
= c−1(C −B)′W−1H ′(HW−1H ′)−1HW−1(C −B) , (4.15)

i.e. we obtain the same formula as for LRNT , but the limit of the score C is replaced by the bias
corrected term C−B. Under assumption 7 and if H0 is satisfied we therefore find LR∗NT →d χ

2
r. One

can also show that LR∗NT = WD∗NT + op(1) under H0.

Lagrange Multiplier Test

The quasi likelihood function was defined in equation (2.3). Its gradient with respect to β evaluated
at the restricted estimates is denoted ∇̃LNT , i.e.

∇̃LNT ≡ ∇LNT (β̃, λ̃, f̃) =

(
∂LNT (β, λ̃, f̃)

∂β1

∣∣∣∣
β=β̃

, . . . ,
∂LNT (β, λ̃, f̃)

∂βK

∣∣∣∣
β=β̃

)′
= − 2

NT

(
Tr (X ′1ẽ) , . . . ,Tr (X ′K ẽ)

)′
, (4.16)

where ẽ = ê(β̃) (for the definition of ê(β) see equation (3.8)). Under assumptions 5 and 6, and if the
null hypothesis H0 : Hβ0 = h is satisfied, one finds that24

√
NT ∇̃LNT =

√
NT ∇LNT (β̃) + op(1)

=
√
NT ∇Lq,NT (β̃) + op(1)

= 2
√
NT WNT (β̃ − β0)− 2CNT + op(1) . (4.17)

Due to the first line of the last equation, one can base the Lagrange multiplier test on the gradient
of LNT (β̃, λ̃, f̃), or on the gradient of the profile quasi likelihood function LNT (β̃) and obtains the
same limiting distribution. That one can also replace ∇LNT (β̃) by its approximation ∇Lq,NT (β̃) is a
consequence of theorem 3.2 and the fact that β̃ is

√
NT -consistent under the Null. Using this result

and the known limiting distribution of β̃ we find
√
NT ∇̃LNT −→

d
−2H ′(HW−1H ′)−1HW−1C . (4.18)

The LM test statistics is given by25

LMNT =
NT

4
(∇̃LNT )′W̃−1H ′(HW̃−1Ω̃W̃−1H ′)−1HW̃−1∇̃LNT , (4.19)

23Alternatively, one could use B̂(β̃) and Ŵ (β̃) as estimates for B and W , and would obtain the same limiting
distribution of LR∗NT under the null hypothesis H0. These alternative estimators are not consistent if H0 is false, i.e.
the power-properties of the test would be different. The question which specification should be preferred is left for future
research.

24The proof of the statement is given in the appendix as part of the proof of theorem 4.7.
25Note also that

√
NTHW−1∇LNT (β̃) →d −2HW−1C.
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where B̃ = B̂(β̃), W̃ = Ŵ (β̃) and Ω̃ = Ω̂(β̃). One can show that the LM test is asymptotically
equivalent to the Wald test: LMNT = WDNT + op(1), i.e. again bias correction is necessary. We
define the bias corrected LM test statistics as

LM∗NT =
1
4

(√
NT ∇̃LNT + 2B̃

)′
W̃−1H ′(HW̃−1Ω̃W̃−1H ′)−1HW̃−1

(√
NT ∇̃LNT + 2B̃

)
. (4.20)

The following theorem summarizes the main results of the present subsection.

Theorem 4.7. Let assumptions 5 and 6 and the null hypothesis H0 : Hβ0 = h be satisfied, and let
β̂ and β̃ be the unrestricted and restricted parameter estimates. Let the estimators Ŵ (β), Ω̂(β), and
B̂(β) be the ones given in definition 4.3. For the bias corrected Wald and LM test statistics introduced
in equation (4.11) and (4.20) we then have

WD∗NT −→
d

χ2
r , LM∗NT −→

d
χ2
r . (4.21)

If in addition we assume Ee2
it = c, i.e. the idiosyncratic errors are homoscedastic, and we use ĉ =

LNT

(
β̂
)

as an estimator for c, then the LR test statistics defined in equation (4.14) satisfies

LR∗NT −→
d

χ2
r . (4.22)

5 Monte Carlo Simulations

We consider an AR(1) model with one factor (R = 1):

Yit = ρ Yi,t−1 + λi ft + eit . (5.1)

We estimate the model as an interactive fixed effect model, i.e. no distributional assumption on λi
and ft are made in the estimation, but assumption 5 is assumed to hold, in particular the eit are
assumed to be independent across i and t. The parameter of interest is ρ. The estimators we consider
are the OLS estimator (which completely ignores the presence of the factors), the QMLE defined in
equation (2.4),26 and the bias corrected QMLE (BC-QMLE) defined in theorem 4.5.

For the simulation we draw eit independently distributed from N (0, 1), the λ0
i independently

distributed from N (1, 1), and we generate the factors from an AR(1) specification, i.e. f0
t = ρf f

0
t−1 +

ut, where ut ∼ iidN (0, (1− ρ2
f )σ2

f ), and σf is the standard deviation of ft.27 In this setup there is no
correlation and heteroscedasticity in eit, i.e. only the bias term B1 of the QMLE is non-zero, but we
ignore this information in the estimation, i.e. we correct for all three bias terms (B1, B2, and B3, as
introduced in assumption 6) in the bias corrected QMLE.

Table 1 shows the simulation results for the bias, standard error and root mean square error of
the three different estimators for the case N = 100, ρf = 0.5, σf = 0.5, and different values of ρ and
T . As expected, the OLS estimator is biased due to the factor structure and its bias does not vanish
(it actually increases) as T increases. The QMLE is also biased, but as predicted by the theory its
bias vanishes as T increases. The bias corrected QMLE performs even better than the non-corrected
QMLE, in particular its bias vanishes even faster. Since we only correct for the first order bias of the
QMLE, we could not expect the bias corrected QMLE to be unbiased. However, as T gets larger more
and more of the QMLE bias is corrected for: at T = 5 the bias correction only corrects for about half
for the QMLE bias, while at T = 80 it already corrects for about 90% of it.

In our setup we have ‖λf ′‖ ≈
√

2NTσf and ‖e‖ ≈
√
N +

√
T .28 Assumption 1 and 3 imply

that asymptotically ‖λf ′‖ � ‖e‖. We can therefore only be sure that the asymptotic results for the
26Here we can either use B = (−1, 1), or B = R. In the present model we only have high-rank regressors, i.e. the

parameter space need not be bounded to show consistency.
27For all simulations we generate 1000 initial time periods for f0

t and yit that are not used for estimation. This
guarantees that that the simulated data used for estimation is distributed according to the stationary distribution of
the model. We also note that the distributional assumptions on f0

t and λ0
i made here do not satisfy assumption 5(i),

but nevertheless all theorems above are applicable since f0
t and λ0

i have arbitrary high uniformly bounded moments.
28To be precise, we have ‖λf ′‖/(

√
2NTσf ) →p 1, and ‖e‖/(

√
N +

√
T ) →p 1.
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QMLE distribution are a good approximation of the finite sample properties if ‖λf ′‖ & ‖e‖, i.e. if√
2NTσf &

√
N +

√
T . In table 2 we present simulation results for N = 100, T = 20, ρ = 0.6

and different values of ρf and σf . In the case σf = 0 we have 0 = ‖λf ′‖ � ‖e‖, and this case is
equivalent to R = 0 (no factor at all). In this case the OLS estimator estimates the true model and is
almost unbiased, and correspondingly the QMLE and the bias corrected QMLE perform worse than
OLS at finite sample (though we suspect that all three estimators are asymptotically equivalent), but
the bias corrected QMLE has a lower bias and a lower variance than the non-corrected QMLE. The
case σf = 0.2 corresponds to ‖λf ′‖ ≈ ‖e‖, and one finds that the bias and the variance of the OLS
estimator and of the QMLE are of comparable size. However, the bias corrected QMLE already has
much smaller bias and a bit smaller variance in this case. Finally, in the case σf = 0.5 we have
‖λf ′‖ > ‖e‖, and we expect our asymptotic result to be a good approximation of this situation.
Indeed, one finds that for σf = 0.5 the OLS estimator is heavily biased and very inefficient compared
to the QMLE, while the bias corrected QMLE performs even better in terms of bias and variance.

An import issue is the choice of bandwidth M for the bias correction. Table 3 gives the fraction
of the QMLE bias that is captured by the estimator for the bias in a model with N = 100, T = 20,
ρf = 0.5, σf = 0.5 and different values for ρ and M . The optimal bandwidth depends on ρ: it is
approximately M = 2 for ρ = 0, M = 4 for ρ = 0.3 and ρ = 0.6, and M = 6 for ρ = 0.9. Choosing the
bandwidth too large or too small results in a smaller fraction of the bias to be corrected, i.e. in a larger
bias of the bias corrected QMLE. The issue of optimal bandwidth choice is therefore an important
topic for future research. In the simulation results presented here we tried to choose reasonable values
for M , but made no attempt of optimizing the bandwidth.

In table 4 we present simulation results for the size of the various tests discussed in the last section
when testing the Null hypothesis H0 : ρ = ρ0. We choose a nominal size of 5%, ρf = 0.5, σf = 0.5,
and different values for ρ0, N and T . In all cases, the size distortions of the uncorrected Wald, LR and
LM test are rather large, and the size distortions of these test do not vanish as N and T increase: the
size for N = 100 and T = 20 is about the same as for N = 400 and T = 80, and the size for N = 400
and T = 20 is about the same as for N = 1600 and T = 80. In contrast, the size distortions for the
bias corrected Wald, LR, and LM test are much smaller, and tend to zero (i.e. the size becomes closer
to 5%) as N,T increase, holding the ratio N/T constant. For fixed T an increase in N results in a
larger size distortion, while for fixed N and increase in T results in a smaller size distortion (both for
the non-corrected and for the bias corrected tests).

In table 5 and 6 we present the power and the size corrected power when testing the left sided
alternative H left

a : ρ = ρ0 − (NT )−1/2 and the right-sided alternative Hright
a : ρ = ρ0 + (NT )−1/2.

The model specifications are the same as for the size results in table 4. Since both the QMLE and
the bias corrected QMLE for ρ have a negative bias one finds the power for the left-sided alternative
to be much smaller than the power for the right-sided alternative. For the uncorrected tests this
effect can be extreme and the size-corrected power of these tests for the left sided alternative is below
2% in all cases, and does not improve as N and T become large, holding N/T fixed. In contrast,
the power for the bias corrected tests becomes more symmetric as N and T become large, and the
size-corrected power for the left sided alternative is much larger than for the uncorrected tests, while
the size corrected power for the right sided alternative is about the same.

6 Conclusions

For the interactive fixed effect model (2.1) we provide a methodology that uses the perturbation theory
of linear operators to expand the profile quasi likelihood function LNT (β) around the true regression
parameter β0. In particular, we work out the quadratic expansion of LNT (β) and show how it can be
used to derive the first order asymptotic theory of the QMLE of β under the alternative asymptotic
N,T → ∞. It is found that the QMLE can be asymptotically biased (i) due to weak exogeneity of
the regressors and (ii) due to correlation and heteroscedasticity of the idiosyncratic errors eit. We
also provide expansions of the projectors Mf̂ and Mλ̂, and of the residuals ê in the the regression
parameters that are very useful when working with these estimators, e.g. when proving consistency
of the asymptotic bias and variance estimators of β̂.
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As applications of our general methodology, we work out the limiting distribution of the QMLE
β̂ under the assumption of independent error terms eit. Consistent estimators for the asymptotic
covariance matrix and for the asymptotic bias of the QMLE are provided, and thus a bias corrected
QMLE is given. We also discuss the asymptotic distribution of the QMLE when the true parameter is
on the boundary of the parameter set. Finally, we derive the asymptotic distribution of the Wald, LR
and LM test statistics, which are not χ2 due to the asymptotic bias of the score and of the QMLE.
We provide bias corrected test statistics and show that their asymptotic distribution is χ2.

The findings of the Monte Carlo experiments show that our asymptotic results on the distribution
of the (bias corrected) QMLE and of the (bias corrected) test statistics provide a good approximation
of their finite sample properties. Although the bias corrected QMLE has a non-zero bias at finite
sample, this bias is much smaller than the one of the QMLE. Analogously, the size distortions and
power asymmetries of the bias corrected Wald, LR and LM test are much smaller than for the non-bias
corrected versions.

Important extensions of the present paper are the derivation of the limiting distribution of the
QMLE when the number of factors is overestimated, and the consistent estimation of the number of
factors in the presence of regressors. We hope to address these issues in future research.

A Examples of Error Distributions

Under each of the following distributional assumptions on the errors eit, i = 1, . . . , N , t = 1, . . . , T ,
we have ‖e‖ = Op(

√
max(N,T )). The proofs are given in the supplementary material.

(i) The eit are independent across i and t, they satisfy Eeit = 0, and Ee4
it is bounded uniformly

over i, t and N,T .

(ii) The eit follow different MA(∞) process for each i, namely

eit =
∞∑
τ=0

ψiτ ui,t−τ , for i = 1 . . . N, t = 1 . . . T , (A.1)

where the uit, i = 1 . . . N , t = −∞ . . . T are independent random variables with Euit = 0 and
Eu4

it uniformly bounded across i, t and N,T . The coefficients ψiτ satisfy

∞∑
τ=0

τ max
i=1...N

ψ2
iτ < B ,

∞∑
τ=0

max
i=1...N

|ψiτ | < B , (A.2)

for a finite constant B which is independent of N and T .

(iii) The error matrix e is generated as e = σ1/2uΣ1/2, where u is an N×T matrix with independently
distributed entries uit and Euit = 0, Eu2

it = 1, and Eu4
it is bounded uniformly across i, t and

N,T . Here σ is the N×N cross-sectional covariance matrix, and Σ is T×T time-serial covariance
matrix, and they satisfy

max
j=1...N

N∑
i=1

|σij | < B , max
τ=1...T

T∑
t=1

|Σtτ | < B , (A.3)

for some finite constant B which is independent of N and T . In this example we have Eeitejτ =
σijΣtτ .

B Proof of Consistency (Theorem 2.1)

The following theorem is useful for the consistency proof and beyond.
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Theorem B.1. Let N , T , R, R1 and R2 be positive integers such that R ≤ N , R ≤ T , and R =
R1 +R2. Let Z be an N ×T matrix, λ be a N ×R, f be a T ×R matrix, λ̃ be a N ×R1 matrix, and f̃
be a T ×R2 matrix. Then the following six expressions (that are functions of Z only) are equivalent:

inf
f,λ

Tr
[
(Z − λf ′)

(
Z ′ − fλ′

)]
= inf

f
Tr(ZMf Z

′) = inf
λ

Tr(Z ′Mλ Z)

= inf
λ̄,f̄

Tr(Mλ̃ ZMf̃ Z
′) =

T∑
i=R+1

µi(Z
′Z) =

N∑
i=R+1

µi(ZZ
′) (B.1)

In the above minimization problems we do not have to restrict the matrices λ, f , λ̃ and f̃ to be
of full rank. If for example λ is not of full rank we can still define (λ′λ)−1 as the generalized inverse
(e.g. via singular value decomposition). The projector Mλ is therefore still defined in this case, and
still satisfied Mλλ = 0 and rank(Mλ) = N − rank(λ). However, if rank(Z) ≥ R then the optimal λ,
f , λ̃ and f̃ have full rank.

Theorem B.1 shows the equivalence of the three different versions of the profile quasi likelihood
function in equation (2.5). It goes beyond this by also considering minimization of Tr(Mλ̃ ZMf̃ Z

′)
over λ̃ and f̃ , which will be used in the consistency proof below. The proof of the theorem is given in
the supplementary material.

The following lemma is due to Bai (2009).

Lemma B.2. Under the assumptions of theorem 2.1 we have

sup
f

∣∣∣∣Tr(XkMf e
′)

NT

∣∣∣∣ = op(1) , sup
f

∣∣∣∣Tr(λ0 f0′Mf e
′)

NT

∣∣∣∣ = op(1) , sup
f

∣∣∣∣Tr(e Pf e′)
NT

∣∣∣∣ = op(1) , (B.2)

where the parameters f are T ×R matrices with rank(f) = R.

Proof. By assumption 2 we know that the first two equations in Lemma B.2 are satisfied when replacing
Mf by the identity matrix. So we are left to show maxf

∣∣ 1
NT Tr(ΞPf e′)

∣∣ = op(1), where Ξ is either Xk,
λ0f0′, or e. In all three cases we have ‖Ξ‖/

√
NT = Op(1), by assumptions 1, 3, and 4, respectively.

We therefore find29

sup
f

∣∣∣∣ 1
NT

Tr(ΞPf e′)
∣∣∣∣ ≤ R ‖e‖√

NT

‖Ξ‖√
NT

= op(1) . (B.3)

Proof of Theorem 2.1. For the second version of the profile quasi likelihood function in equation (2.5)
we write LNT (β) = inff SNT (β, f), where

SNT (β, f) =
1
NT

Tr

(λ0 f0′ +
K∑
k=1

(β0
k − βk)Xk + e

)
Mf

(
λ0 f0′ +

K∑
k=1

(β0
k − βk)Xk + e

)′ ,
(B.4)

We have SNT (β0, f0) = 1
NT Tr

(
eMf0 e′

)
. Using Lemma (B.2) we find that

SNT (β, f) = SNT (β0, f0) + S̃NT (β, f)

+
2
NT

Tr

[(
λ0 f0′ +

K∑
k=1

(β0
k − βk)Xk

)
Mf e

′

]
+

1
NT

Tr
(
e (Pf0 − Pf ) e′

)
= SNT (β0, f0) + S̃NT (β, f) + op(‖β − β0‖) + op(1) , (B.5)

29Here we use |Tr (C)| ≤ ‖C‖ rank (C), which holds for all square matrices C, see the supplementary material.
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where we defined

S̃NT (β, f) =
1
NT

Tr

(λ0 f0′ +
K∑
k=1

(β0
k − βk)Xk

)
Mf

(
λ0 f0′ +

K∑
k=1

(β0
k − βk)Xk

)′ . (B.6)

Up to this point the consistency proof is almost equivalent to the one given in Bai (2009), but the
remainder of the proof differs from Bai, since we allow for more general low-rank regressors, and since
we allow for high-rank and low-rank regressors simultaneously. We split S̃NT (β, f) = S̃

(1)
NT (β, f) +

S̃
(2)
NT (β, f), where

S̃
(1)
NT (β, f) =

1
NT

Tr

(λ0 f0′ +
K∑
k=1

(β0
k − βk)Xk

)
Mf

(
λ0 f0′ +

K∑
k=1

(β0
k − βk)Xk

)′
M(λ0,w)


=

1
NT

Tr

( K∑
m=K1+1

(β0
m − βm)Xm

)
Mf

(
K∑

m=K1+1

(β0
m − βm)Xm

)′
M(λ0,w)

 ,
S̃

(2)
NT (β, f) =

1
NT

Tr

(λ0 f0′ +
K∑
k=1

(β0
k − βk)Xk

)
Mf

(
λ0 f0′ +

K∑
k=1

(β0
k − βk)Xk

)′
P(λ0,w)

 ,

(B.7)

and (λ0, w) is the N × (R+K1) matrix that is composed out of λ0 and the N ×K1 matrix w defined
in assumption 4. For S̃(1)

NT (β, f) we can apply theorem B.1 with f̃ = f and λ̃ = (λ0, w) (the R in the
theorem is now 2R+K1) to find

S̃
(1)
NT (β, f) ≥ 1

NT

N∑
i=2R+K1+1

µi

( K∑
m=K1+1

(β0
m − βm)Xm

)(
K∑

m=K1+1

(β0
m − βm)Xm

)′
≥ b

∥∥∥βhigh − βhigh
0

∥∥∥2

, wpa1, (B.8)

where in the last step we used the existence of a constant b > 0 guaranteed by assumption 4(b)(i), and
we introduced βhigh = (βK1+1, . . . , βK)′, which refers to the K2 × 1 parameter vector corresponding
to the high-rank regressors. Similarly we define βlow = (β1, . . . , βK1

)′ for the K1× 1 parameter vector
of low-rank regressors.

Using P(λ0,w) = P(λ0,w)P(λ0,w) and the cyclicality of the trace we see that S̃(2)
NT (β, f) can be written

as the trace of a positive definite matrix, and therefore S̃(2)
NT (β, f) ≥ 0. Note also that we can choose

β = β0 and f = f0 to obtain S̃NT (β0, f0) = 0, i.e. the optimal β = β̂ and f = f̂ must satisfy
S̃NT (β̂, f̂) ≤ 0. Using this and equation B.5 we find

0 ≥ b
∥∥∥β̂high

− βhigh
0

∥∥∥2

+ op

(∥∥∥β̂high
− βhigh

0

∥∥∥)+ op

(∥∥∥β̂low
− βlow

0

∥∥∥)+ op(1) . (B.9)

Since we assume that β̂
low

is bounded, the last equation implies that
∥∥∥β̂high

− βhigh
0

∥∥∥ = op(1), i.e.

β̂
high

is consistent. What is left to show is that β̂
low

is consistent, too.
In the supplementary material we show that assumption 4(b)(ii) guarantees that there exist finite

positive constants a0, a1, a2, a3 and a4 such that

S̃
(2)
NT (β, f) ≥

a0

∥∥∥βlow − βlow
0

∥∥∥2

∥∥∥βlow − βlow
0

∥∥∥2

+ a1

∥∥∥βlow − βlow
0

∥∥∥+ a2

− a3

∥∥∥βhigh − βhigh
0

∥∥∥− a4

∥∥∥βhigh − βhigh
0

∥∥∥ ∥∥∥βlow − βlow
0

∥∥∥ , wpa1. (B.10)
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Using consistency of β̂
high

and again boundedness of βlow this implies that there exists a > 0 such

that S̃(2)
NT (β̂, f) ≥ a

∥∥∥β̂low
− βlow

0

∥∥∥2

+ op(1). With the same argument as for β̂
high

we therefore find∥∥∥β̂low
− βlow

0

∥∥∥ = op(1), i.e. β̂
low

is consistent. This is what we wanted to show.

C Power Series Expansion of the Profile Quasi Likelihood
Function (Proofs of Theorems 3.1, 3.2 and 3.3)

Definition C.1. For the N ×R matrix λ0 and the T ×R matrix f0 we define

dmax(λ0, f0) =
1√
NT

∥∥λ0f0′∥∥ =
1√
NT

√
µ1(λ0′f0f0′λ0) ,

dmin(λ0, f0) =
1√
NT

√
µR(λ0′f0f0′λ0) , (C.1)

i.e. dmax(λ0, f0) and dmin(λ0, f0) are the square roots of the maximal and the minimal eigenvalue of
λ0′f0f0′λ0/NT . Furthermore, the convergence radius r0(λ0, f0) is defined by

r0(λ0, f0) =
(

4dmax(λ0, f0)
d2

min(λ0, f0)
+

1
2dmax(λ0, f0)

)−1

. (C.2)

Theorem C.2. If the following condition is satisfies

K∑
k=1

∣∣β0
k − βk

∣∣ ‖Xk‖√
NT

+
‖e‖√
NT

< r0(λ0, f0) , (C.3)

then

(i) the profile quasi likelihood function can be written as a power series in the K + 1 parameters
ε0 = ‖e‖/

√
NT and εk = β0

k − βk, namely

LNT (β) =
1
NT

∞∑
g=2

K∑
κ1=0

K∑
κ2=0

. . .

K∑
κg=0

εκ1 εκ2 . . . εκg L
(g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

)
, (C.4)

where the expansion coefficients are given by30

L(g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

)
= L̃(g)

(
λ0, f0, X(κ1 , Xκ2 , . . . , Xκg)

)
=

1
g!

[
L̃(g)

(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

)
+ all permutations of κ1, . . . , κg

]
,

(C.5)

i.e. L(g) is obtained by total symmetrization of the last g arguments of 31

L̃(g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

)
=

g∑
p=1

(−1)p+1
∑

ν1 + . . .+ νp = g
l1 + . . .+ lp+1 = p− 1

2 ≥ νj ≥ 1 , lj ≥ 0

Tr
(
S(l1) T (ν1)

κ1... S
(l2) . . . S(lp) T (νp)

...κg S
(lp+1)

)
,

(C.6)

30Here we use the round bracket notation (κ1, κ2, . . . , κg) for total symmetrization of these indices.
31One finds L̃(1)

`
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

´
= 0, which is why the sum in the power series of LNT starts from g = 2

instead of g = 1.
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with

S(0) = −Mλ0 , S(l) =
[
λ0(λ0′λ0)−1(f0′f0)−1(λ0′λ0)−1λ0′]l , for l ≥ 1,

T (1)
κ = λ0 f0′X ′κ +Xκ f

0 λ0′ , T (2)
κ1κ2

= Xκ1 X
′
κ2
, for κ, κ1, κ2 = 0 . . .K ,

X0 =
√
NT

‖e‖
e , Xκ = Xk , for κ = k = 1 . . .K . (C.7)

(ii) the projector Mλ̂(β) can be written as a power series in the same parameters εκ (κ = 0, . . . ,K),
namely

Mλ̂ (β) =
∞∑
g=0

K∑
κ1=0

K∑
κ2=0

. . .

K∑
κg=0

εκ1 εκ2 . . . εκg M
(g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

)
, (C.8)

where the expansion coefficients are given by M (0)(λ0, f0) = Mλ0 , and for g ≥ 1

M (g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

)
= M̃ (g)

(
λ0, f0, X(κ1 , Xκ2 , . . . , Xκg)

)
=

1
g!

[
M̃ (g)

(
Xκ1 , Xκ2 , . . . , Xκg

)
+ all permutations of κ1, . . . , κg

]
, (C.9)

i.e. M (g) is obtained by total symmetrization of the last g arguments of

M̃ (g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

)
=

g∑
p=1

(−1)p+1
∑

ν1 + . . .+ νp = g
l1 + . . .+ lp+1 = p
2 ≥ νj ≥ 1 , lj ≥ 0

S(l1) T (ν1)
κ1... S

(l2) . . . S(lp) T (νp)
...κg S

(lp+1) ,

(C.10)

where S(k), T (1)
κ , T (2)

κ1κ2 , and Xκ are given above.

(iii) The coefficients L(g) in the series expansion of LNT (β) are bounded as follows

1
NT

∣∣∣L(g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

)∣∣∣
≤ Rg d2

min(λ0, f0)
2

(
16 dmax(λ0, f0)
d2

min(λ0, f0)

)g ‖Xκ1‖√
NT

‖Xκ2‖√
NT

. . .
‖Xκg‖√
NT

(C.11)

Under the stronger condition

K∑
k=1

∣∣β0
k − βk

∣∣ ‖Xk‖√
NT

+
‖e‖√
NT

<
d2

min(λ0, f0)
16 dmax(λ0, f0)

, (C.12)

we therefore have the following bound on the remainder when the series expansion for LNT (β)
is truncated at order G ≥ 2:∣∣∣∣LNT (β)− 1

NT

G∑
g=2

K∑
κ1=0

. . .

K∑
κg=0

εκ1 . . . εκg L
(g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

) ∣∣∣∣
≤ R (G+ 1)αG+1 d2

min(λ0, f0)
2(1− α)2

, (C.13)

where

α =
16 dmax(λ0, f0)
d2

min(λ0, f0)

(
K∑
k=1

∣∣β0
k − βk

∣∣ ‖Xk‖√
NT

+
‖e‖√
NT

)
< 1 . (C.14)
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(iv) The operator norm of the coefficient M (g) in the series expansion of Mλ̂ (β) is bounded as follows,
for g ≥ 1∥∥∥M (g)

(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

)∥∥∥ ≤ g

2

(
16 dmax(λ0, f0)
d2

min(λ0, f0)

)g ‖Xκ1‖√
NT

‖Xκ2‖√
NT

. . .
‖Xκg‖√
NT

.

(C.15)

Under the condition (C.12) we therefore have the following bound on operator norm of the
remainder of the series expansion of Mλ̂ (β), for G ≥ 0∥∥∥∥Mλ̂ (β) −

G∑
g=0

K∑
κ1=0

. . .

K∑
κg=0

εκ1 . . . εκg M
(g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

) ∥∥∥∥ ≤ (G+ 1)αG+1

2(1− α)2
.

(C.16)

Proof.

(i,ii) We apply perturbation theory in Kato (1980). The unperturbed operator is T (0) = λ0λ0′, the
perturbed operator is T = T (0) +T (1) +T (2) (i.e. the parameter κ that appears in Kato is set to
1), where T (1) =

∑K
κ=0 εκXκf

0λ0′+λ0f0′∑K
κ=0 εκX

′
κ, and T (2) =

∑K
κ1=0

∑K
κ2=0 εκ1εκ2Xκ1X

′
κ2

.
The matrices T and T 0 are real and symmetric (which implies that they are normal operators),
and positive semi-definite. We know that T (0) has an eigenvalue 0 with multiplicity N −R, and
the separating distance of this eigenvalue is d = NTd2

min(λ0, f0). The bound (C.3) guarantees
that

‖T (1) + T (2)‖ ≤ NT

2
d2

min(λ0, f0) , (C.17)

by Weyl’s inequality we therefore find that the N − R smallest eigenvalues of T (also counting
multiplicity) are all smaller than NT

2 d2
min(λ0, f0), and they “originate” from the zero-eigenvalue

of T (0), with the power series expansion for LNT (β) given in (2.22) and (2.18) at p.77/78 of
Kato, and the expansion of Mλ̂ given in (2.3) and (2.12) at p.75,76 of Kato. We still need to
justify the convergence radius of this series. Since we set the complex parameter κ in Kato
to 1, we need to show that the convergence radius (r0 in Kato’s notation) is at least 1. The
condition (3.7) in Kato p.89 reads ‖T (n)‖ ≤ acn−1, n = 1, 2, . . ., and it is satisfied for a =
2
√
NTdmax(λ0, f0)

∑K
κ=0 |εκ|‖Xκ‖ and c =

∑K
κ=0 |εκ|‖Xκ‖/

√
NT/2/dmax(λ0, f0). According

to equation (3.51) in Kato p.95, we therefore find that the power series for LNT (β) and Mλ̂ are
convergent (r0 ≥ 1 in his notation) if 1 ≤

(
2a
d + c

)−1, and this becomes exactly our condition
(C.3).

When LNT (β) is approximated up to order G ∈ N, Kato’s equation (3.6) at p.89 gives the
following bound on the remainder∣∣∣∣LNT (β)− 1

NT

G∑
g=2

K∑
κ1=0

. . .

K∑
κg=0

εκ1 . . . εκg L
(g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

) ∣∣∣∣
≤ (N −R)γG+1 d2

min(λ0, f0)
4(1− γ)

,

(C.18)

where

γ =

∑K
k=1

∣∣β0
k − βk

∣∣ ‖Xk‖√
NT

+ ‖e‖√
NT

r0(λ0, f0)
< 1 . (C.19)

This bound again shows convergence of the series expansion, since γG+1 → 0 as G → ∞.
Unfortunately, for our purposes this is not a good bound since it still involves the factor N −R
(in Kato this factor is hidden since his λ̂(κ) is the average of the eigenvalues, not the sum), but
as we show below this can be avoided.
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(iii,iv) We have ‖S(k)‖ =
(
NTd2

min(λ0, f0)
)−k

, ‖T (1)
κ ‖ ≤ 2

√
NTdmax(λ0, f0)‖Xκ‖, and ‖T (2)

κ1κ2‖ ≤
‖Xκ1‖‖Xκ2‖. Therefore∥∥∥S(l1) T (ν1)

κ1... S
(l2) . . . S(lp) T (νp)

...κg S
(lp+1)

∥∥∥
≤
(
NTd2

min(λ0, f0)
)−P

lj
(

2
√
NTdmax(λ0, f0)

)2p−
P
νj
‖Xκ1‖‖Xκ2‖ . . . ‖Xκg‖ .

(C.20)

We have ∑
ν1 + . . .+ νp = g

2 ≥ νj ≥ 1

1 ≤ 2p ,

∑
l1 + . . .+ lp+1 = p− 1

lj ≥ 0

1 ≤
∑

l1 + . . .+ lp+1 = p
lj ≥ 0

1 =
(2p)!
(p!)2

≤ 4p . (C.21)

Using this we find32∥∥∥M (g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

)∥∥∥
≤
(

2
√
NTdmax(λ0, f0)

)−g
‖Xκ1‖‖Xκ2‖ . . . ‖Xκg‖

g∑
p=dg/2e

(
32 d2

max(λ0, f0)
d2

min(λ0, f0)

)p

≤ g

2

(
16 dmax(λ0, f0)
d2

min(λ0, f0)

)g ‖Xκ1‖√
NT

‖Xκ2‖√
NT

. . .
‖Xκg‖√
NT

. (C.22)

For g ≥ 3 there always appears at least one factor S(l), l ≥ 1, inside the trace of the terms that
contribute to L(g), and we have rank(S(l)) = R for l ≥ 1. Using Tr(A) ≤ rank(A)‖A‖, and the
equations (C.20) and (C.21), we therefore find33 for g ≥ 3

1
NT

∣∣∣L(g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

)∣∣∣
≤ Rd2

min(λ0, f0)
(

2
√
NTdmax(λ0, f0)

)−g
‖Xκ1‖‖Xκ2‖ . . . ‖Xκg‖

g∑
p=dg/2e

(
32 d2

max(λ0, f0)
d2

min(λ0, f0)

)p

≤ Rg d2
min(λ0, f0)

2

(
16 dmax(λ0, f0)
d2

min(λ0, f0)

)g ‖Xκ1‖√
NT

‖Xκ2‖√
NT

. . .
‖Xκg‖√
NT

. (C.23)

This implies for g ≥ 3

1
NT

∣∣∣∣∣∣
K∑

κ1=0

K∑
κ2=0

. . .

K∑
κg=0

εκ1 εκ2 . . . εκg L
(g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

)∣∣∣∣∣∣
≤ Rg d2

min(λ0, f0)
2

(
16 dmax(λ0, f0)
d2

min(λ0, f0)

)g ( K∑
κ=0

‖εκXκ‖√
NT

)g
. (C.24)

32The sum over p only starts from dg/2e, the smallest integer larger or equal g/2, because ν1 + . . .+ νp = g can not
be satisfied for smaller p, since νj ≤ 2.

33The calculation for the bound of L(g) is almost identical to the one for M(g). But now there appears an additional
factor R from the rank, and since

P
lj = p− 1 (not p as before), there is also an additional factor NTd2

min(λ0, f0).
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Therefore for G ≥ 2 we have∣∣∣∣LNT (β)− 1
NT

G∑
g=2

K∑
κ1=0

. . .

K∑
κg=0

εκ1 . . . εκg L
(g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

) ∣∣∣∣
=

1
NT

∞∑
g=G+1

K∑
κ1=0

K∑
κ2=0

. . .

K∑
κg=0

εκ1 εκ2 . . . εκg L
(g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

)
≤

∞∑
g=G+1

Rg αg d2
min(λ0, f0)
2

≤ R (G+ 1)αG+1 d2
min(λ0, f0)

2(1− α)2
, (C.25)

where

α =
16 dmax(λ0, f0)
d2

min(λ0, f0)

K∑
κ=0

‖εκXκ‖√
NT

=
16 dmax(λ0, f0)
d2

min(λ0, f0)

(
K∑
k=1

∣∣β0
k − βk

∣∣ ‖Xk‖√
NT

+
‖e‖√
NT

)
< 1 . (C.26)

Using the same argument we can start from equation (C.22) to obtain the bound (C.16) for the
remainder of the series expansion for Mλ̂ (β).

Note that compared to the bound (C.18) on the remainder, the new bound (C.25) only shows con-
vergence of the power series within the the smaller convergence radius d2min(λ0,f0)

16 dmax(λ0,f0)
< r0(λ0, f0).

However, the factor N −R does not appear in this new bound, which is crucial for our approxi-
mations.

We can now prove the quadratic expansion of LNT (β) given in the main text.

Proof of theorem 3.1. Assumption 1 implies that

dmax(λ0, f0) −→
p

d∞max > 0 , dmin(λ0, f0) −→
p

d∞min > 0 . (C.27)

Therefore also r0(λ0, f0) →p r
∞
0 > 0. Assumptions 1, 3, and 4 furthermore imply that

‖λ0‖√
N

= Op(1) ,
‖f0‖√
T

= Op(1) ,∥∥∥∥∥
(
λ0′λ0

N

)−1
∥∥∥∥∥ = Op(1) ,

∥∥∥∥∥
(
f0′f0

T

)−1
∥∥∥∥∥ = Op(1) ,

‖Xk‖√
NT

= Op(1) ,
‖e‖√
NT

= op(1) . (C.28)

Since
∥∥β − β0

∥∥ ≤ ηNT and ηNT = o(1) we find α → 0 as N,T → ∞, i.e. the condition to
apply theorem C.2 part (iii) is asymptotically satisfied. Using the inequality (C.11), the linearity of
L(g)

(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

)
in the arguments Xκ, and the fact that ε0X0 = e we find

1
NT

(ε0)g−r L(g)
(
λ0, f0, Xk1 , . . . , Xkr , X0, . . . , X0

)
= Op

((
‖e‖√
NT

)g−r)
. (C.29)
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Applying the inequality (C.13) for G = Ge then gives

LNT (β)

=
1
NT

Ge∑
g=2

K∑
κ1=0

. . .

K∑
κg=0

εκ1 . . . εκg L
(g)
(
λ0, f0, Xκ1 , Xκ2 , . . . , Xκg

)
+Op

(
αG+1

)
=

1
NT

Ge∑
g=2

εg0 L
(g)
(
λ0, f0, X0, X0, . . . , X0

)
+

1
NT

Ge∑
g=2

g

K∑
k=1

(
β0
k − βk

)
εg−1
0 L(g)

(
λ0, f0, Xk, X0, . . . , X0

)
+

1
NT

Ge∑
g=2

g (g − 1)
K∑

k1=1

K∑
k2=1

(
β0
k1 − βk1

) (
β0
k2 − βk2

)
εg−2
0 L(g)

(
λ0, f0, Xk1 , Xk2 , X0, . . . , X0

)
+

1
NT

Ge∑
g=3

g∑
r=3

Op
[∥∥β0 − β

∥∥r εg−r0 L(g)
(
λ0, f0, Xk1 , . . . , Xkr , X0, . . . , X0

)]

+Op

( K∑
k=1

∣∣β0
k − βk

∣∣ ‖Xk‖√
NT

+
‖e‖√
NT

)Ge+1


=
1
NT

Ge∑
g=2

g

K∑
k=1

(
β0
k − βk

)
L(g)

(
λ0, f0, Xk, e, . . . , e

)
+

2
NT

K∑
k1=1

K∑
k2=1

(
β0
k1 − βk1

) (
β0
k2 − βk2

)
L(2)

(
λ0, f0, Xk1 , Xk2

)
+

1
NT

INT +
1
NT

RNT (β) , (C.30)

where

INT =
Ge∑
g=2

L(g)
(
λ0, f0, e, e, . . . , e

)
+NT Op

((
‖e‖√
NT

)Ge+1
)
,

RNT (β) =R1,NT (β) +R2,NT (β) ,

R1,NT (β) =NT
Ge+1∑
g=3

g∑
r=2

Op

(
‖β0 − β‖r

(
‖e‖√
NT

)g−r)
,

R2,NT (β) =NT Op

(
‖β0 − β‖

(
‖e‖√
NT

)Ge)
. (C.31)

We find that INT is independent of β, while R1,NT (β) and R2,NT (β) satisfy

sup
β:‖β−β0‖≤ηNT

|R1,NT (β)|(
1 +
√
NT

∥∥β − β0
∥∥)2 ≤ sup

β:‖β−β0‖≤ηNT

|R1,NT (β)|
NT

∥∥β − β0
∥∥2

= Op
(
‖e‖√
NT

)
+Op (ηNT ) = op(1) ,

sup
β:‖β−β0‖≤ηNT

|R2,NT (β)|(
1 +
√
NT

∥∥β − β0
∥∥)2 ≤ sup

β:‖β−β0‖≤ηNT

|R2,NT (β)|
2
√
NT

∥∥β − β0
∥∥

=
√
NT Op

((
‖e‖√
NT

)Ge)
= op(1) , (C.32)
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where we used ηNT → 0 and assumption 3∗ to show that the terms are op(1). Since the condition
(3.4) is satisfied for R1,NT (β) and R2,NT (β) separately, it is also satisfied for the total remainder
RNT (β).

Proof of Theorem 3.2. Using the expansion of LNT (β) in theorem C.2 we find for the derivative (the
sign convention εk = β0

k − βk results in the minus sign below)

∂LNT
∂βk

= − 1
NT

∞∑
g=2

g

K∑
κ1=0

K∑
κ2=0

. . .

K∑
κg−1=0

εκ1 εκ2 . . . εκg−1 L
(g)
(
λ0, f0, Xk, Xκ1 , . . . , Xκg−1

)
=
[
2WNT (β − β0)

]
k
− 2√

NT
CNT,k +

1
NT
∇R1,NT,k +

1
NT
∇R2,NT,k , (C.33)

where

WNT,k1k2 =
1
NT

L(2)
(
λ0, f0, Xk1 , Xk2

)
,

CNT,k =
1

2
√
NT

Ge∑
g=2

g (ε0)g−1 L(g)
(
λ0, f0, Xk, X0, . . . , X0

)
=

Ge∑
g=2

g

2
√
NT

L(g)
(
λ0, f0, Xk, e, . . . , e

)
, (C.34)

and

∇R1,NT,k = −
∞∑

g=Ge+1

g (ε0)g−1 L(g)
(
λ0, f0, Xk, X0, . . . , X0

)
,

= −
∞∑

g=Ge+1

g L(g)
(
λ0, f0, Xk, e, . . . , e

)
,

∇R2,NT,k = −
∞∑
g=3

g

g−1∑
r=1

(
g − 1
r

) K∑
k1=1

. . .

K∑
kr=1

εk1 . . . εkr (ε0)g−r−1

L(g)
(
λ0, f0, Xk, Xk1 , . . . , Xkr , X0, . . . , X0

)
.

= −
∞∑
g=3

g

g−1∑
r=1

(
g − 1
r

) K∑
k1=1

. . .

K∑
kr=1

(β0
k1 − βk1) . . . (β0

kr − βkr )

L(g)
(
λ0, f0, Xk, Xk1 , . . . , Xkr , e, . . . , e

)
. (C.35)

The above expressions for WNT and CNT are equivalent to their definitions given in theorem 3.1.
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Using the bound on L(g) in formula (C.11) we find34

|∇R1,NT,k| ≤ c0NT
‖Xk‖√
NT

∞∑
g=Ge+1

g2

(
c1‖e‖√
NT

)g−1

≤ 2 c0 (1 +Ge)2NT
‖Xk‖√
NT

(
c1‖e‖√
NT

)Ge [
1−

(
c1‖e‖√
NT

)]−3

= op(
√
NT ) ,

|∇R2,NT,k| ≤ c0NT
‖Xk‖√
NT

∞∑
g=3

g2

g−1∑
r=1

(
g − 1
r

)
cg−1
1

 K∑
k̃=1

|βk̃ − β
0
k|
‖Xk̃‖√
NT


×

 K∑
k̃=1

|βk̃ − β
0
k|
‖Xk̃‖√
NT

+
‖e‖√
NT

g−2

≤ c0NT
‖Xk‖√
NT

∞∑
g=3

g3 (4c1)g−1

 K∑
k̃=1

|βk̃ − β
0
k|
‖Xk̃‖√
NT

 K∑
k̃=1

|βk̃ − β
0
k̃
|
‖Xk̃‖√
NT

+
‖e‖√
NT

g−2

≤ c2NT
‖Xk‖√
NT

 K∑
k̃=1

|βk̃ − β
0
k|
‖Xk̃‖√
NT

 K∑
k̃=1

|βk̃ − β
0
k̃
|
‖Xk̃‖√
NT

+
‖e‖√
NT

 , (C.36)

where c0 = 8Rdmax(λ0, f0)/2 and c1 = 16dmax(λ0, f0)/d2
min(λ0, f0) both converge to a constants as

N,T → ∞, and the very last inequality is only true if 4c1
(∑K

k̃=1 |βk̃ − β
0
k̃
| ‖Xk̃‖√
NT

+ ‖e‖√
NT

)
< 1, and

c2 > 0 is an appropriate positive constant. To show ∇R1,NT,k = op(NT ) we used assumption 3∗.
From the above inequalities we find for ηNT →∞

sup
{β:‖β−β0‖≤ηNT }

‖∇R1,NT (β)‖√
NT

= op (1) ,

sup
{β:‖β−β0‖≤ηNT }

‖∇R2,NT (β)‖
NT

∥∥β − β0
∥∥ = op (1) . (C.37)

Thus RNT (β) = R1,NT (β) +R2,NT (β) satisfies the bound in equation (3.7).

Proof of Theorem 3.3. The general expansion of Mλ̂ is given in theorem C.2, and in the theorem we
just make this expansion explicit up to a particular order. To obtain the bound on the remainder
we make use of equation (C.22) in the proof of theorem C.2. The result for Mf̂ is just obtained by
symmetry (N ↔ T , λ↔ f , e↔ e′, Xk ↔ X ′k). For the residuals ê we have

ê = Mλ̂

(
Y −

∑
k=1

β̂kXk

)

= Mλ̂

[
e−

K∑
k=1

(
β̂k − β

0
k

)
Xk + λ0f0′

]
, (C.38)

and plugging in the expansion of Mλ̂ gives the expansion of ê. We have ê(β) = A0 +λ0f0′− λ̂(β)f̂ ′(β),
where A0 = e−

∑
k(βk − β

0
k)Xk. Therefore ê(rem)(β) = A1 + A2 + A3 with A1 = A0 −Mλ0 A0Mf0 ,

A2 = λ0f0′ − λ̂(β)f̂ ′(β), and A3 = −ê(1)
e . We find rank(A1) ≤ 2R, rank(A2) ≤ 2R, rank(A3) ≤ 3R,

and thus rank(ê(rem)(β)) ≤ 7R, as stated in the theorem.

34Here we use
`n
k

´
≤ 4n.
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D Proof of Theorem 4.1

Lemma D.1. Under assumption 5 we have

‖Xweak
k ‖ = Op(

√
N) , k = 1, . . . ,K ,

‖Pλ0ePf0‖ = Op(1) ,

‖Pλ0eXstr ′
k ‖ = Op(

√
NT ) , k = 1, . . . ,K ,

‖Pf0e′Xstr
k ‖ = Op(

√
NT ) , k = 1, . . . ,K . (D.1)

Lemma D.2. Under assumption 5 we have

(a)
1
NT

Tr(Mf0 Xweak′
k1 Pλ0 Xweak

k2 ) = op(1) ,

(b)
1
NT

Tr(Pf0 Xweak′
k1 Xweak

k2 ) = op(1) ,

(c)
1√
NT

Tr
(
eMf0 e′Mλ0 Xweak

k f0 (f0′f0)−1 (λ0′λ0)−1 λ0′) = op(1) ,

(d)
1√
NT

Tr
(
e′Mλ0 eMf0 Xweak ′

k λ0 (λ0′λ0)−1 (f0′f0)−1 f0′) = op(1) ,

(e)
1√
NT

Tr
(
e′Mλ0 Xweak

k Mf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′) = op(1) ,

(f)
1√
NT

Tr
(
Pf0 e′ Pλ0 Xweak

k

)
= op(1) ,

(g)
1√
NT

Tr
(
ePf0 e′Mλ0 Xstr

k f0 (f0′f0)−1 (λ0′λ0)−1 λ0′) = op(1) ,

(h)
1√
NT

Tr
(
e′ Pλ0 eMf0 Xstr ′

k λ0 (λ0′λ0)−1 (f0′f0)−1 f0′) = op(1) ,

(i)
1√
NT

Tr
(
e′Mλ0 Xstr

k Mf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′) = op(1) ,

(j)
1√
NT

Tr
(
e′ Pλ0 Xweak

k

)
= op(1) ,

(k)
1√
NT

Tr
{

[ee′ − E (ee′)] Mλ0 Xstr
k f0 (f0′f0)−1 (λ0′λ0)−1 λ0′} = op(1) ,

(l)
1√
NT

Tr
{

[e′e− E (e′e)] Mf0 Xstr ′
k λ0 (λ0′λ0)−1 (f0′f0)−1 f0′} = op(1) ,

(m)
1√
NT

Tr
{
Pf0

[
e′Xweak

k − E
(
e′Xweak

k

)]}
= op(1) . (D.2)

Lemma D.3. Under assumptions 5 and 6 we have

1√
NT

N∑
i=1

T∑
t=1

eitXit →
d
N (0,Ω) . (D.3)

The proofs of the three preceding lemmas are given in the supplementary material. The proof
of lemma D.3 makes use of the cross-sectional independence of (eit, Xweak

it ), and applies theorem 2
in Phillips and Moon (1999). With these lemmas we can now prove the theorem on the limiting
distribution of β̂ in the main text.

Proof of Theorem 4.1. We have ‖e‖ = Op(N1/2), i.e. assumption 3∗ is satisfied with Ge = 3. When
applying corollary 3.4 to calculate the limiting distribution of β̂ we therefore only have to calculate
the limit of the denominator terms 1√

NT
C(g)

(
λ0, f0, Xk, e

)
for g = 2 and g = 3. Using Lemma D.2

34



and assumption 6 we find for the matrix in the numerator

WNT,k1k2 =
1
NT

Tr(Mf0 X ′k1 Mλ0 Xk2)

=
1
NT

Tr(X′k1Xk2)− 1
NT

Tr(Pf0 Xweak′
k1 Xweak

k2 )− 1
NT

Tr(Mf0 Xweak′
k1 Pλ0 Xweak

k2 )

=
1
NT

Tr(X′k1Xk2) + op(1) .

= W + op(1) . (D.4)

Using Lemmas D.2 and D.3 and assumption 6 we find for the denominator terms

1√
NT

C(2)
(
λ0, f0, Xk, e

)
=

1√
NT

Tr
(
Mf0 e′Mλ0 Xk

)
=

1√
NT

Tr (e′Xk)− 1√
NT

Tr
[
Pf0 E

(
e′Xweak

k

)]
− 1√

NT
Tr
(
e′ Pλ0 Xweak

k

)
+

1√
NT

Tr
(
Pf0 e′ Pλ0 Xweak

k

)
− 1√

NT
Tr
{
Pf0

[
e′Xweak

k − E
(
e′Xweak

k

)]}
=

1√
NT

Tr (e′Xk)− 1√
NT

Tr
[
Pf0 E

(
e′Xweak

k

)]
+ op(1) .

→
d
N (−κB1, Ω) , (D.5)
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and

1√
NT

C(3)
(
λ0, f0, Xk, e

)
=− 1√

NT

[
Tr
(
eMf0 e′Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′)
+ Tr

(
e′Mλ0 eMf0 X ′k λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′)
+ Tr

(
e′Mλ0 XkMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′) ]

=− 1√
NT

Tr
(
eMf0 e′Mλ0 Xweak

k f0 (f0′f0)−1 (λ0′λ0)−1 λ0′)
+

1√
NT

Tr
(
ePf0 e′Mλ0 Xstr

k f0 (f0′f0)−1 (λ0′λ0)−1 λ0′)
− 1√

NT
Tr
{

[ee′ − E (ee′)] Mλ0 Xstr
k f0 (f0′f0)−1 (λ0′λ0)−1 λ0′}

− 1√
NT

Tr
[
E (ee′) Mλ0 Xstr

k f0 (f0′f0)−1 (λ0′λ0)−1 λ0′]
− 1√

NT
Tr
(
e′Mλ0 eMf0 Xweak ′

k λ0 (λ0′λ0)−1 (f0′f0)−1 f0′)
+

1√
NT

Tr
(
e′Pλ0 eMf0 Xstr ′

k λ0 (λ0′λ0)−1 (f0′f0)−1 f0′)
− 1√

NT
Tr
{

[e′e− E (e′e)] Mf0 Xstr ′
k λ0 (λ0′λ0)−1 (f0′f0)−1 f0′}

− 1√
NT

Tr
[
E (e′e) Mf0 Xstr ′

k λ0 (λ0′λ0)−1 (f0′f0)−1 f0′]
+

1√
NT

Tr
(
e′Mλ0 Xweak

k Mf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′)
+

1√
NT

Tr
(
e′Mλ0 Xstr

k Mf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′)
=− 1√

NT
Tr
[
E (ee′) Mλ0 Xstr

k f0 (f0′f0)−1 (λ0′λ0)−1 λ0′]
− 1√

NT
Tr
[
E (e′e) Mf0 Xstr ′

k λ0 (λ0′λ0)−1 (f0′f0)−1 f0′]+ op(1) ,

=− κ−1B2 − κB3 + op(1) , (D.6)

Combining these results we obtain

√
NT

(
β̂ − β0

)
= W−1

NT

(
1√
NT

C(2) +
1√
NT

C(2)

)
,

→
d
N
(
−W−1

(
κB1 + κ−1B2 + κB3

)
, W−1 ΩW−1

)
, (D.7)

which is what we wanted to show.

E Proof of Theorem 4.4

Corollary E.1. Under assumptions 5 and 6 we have
√
NT

(
β̂ − β0

)
= Op(1).

This corollary directly follows from theorem 4.1.

Corollary E.2. Under assumption 5 we have∥∥Pλ̂ − Pλ0

∥∥ =
∥∥Mλ̂ −Mλ0

∥∥ = Op(N−1/2) ,∥∥∥Pf̂ − Pf0

∥∥∥ =
∥∥∥Mf̂ −Mf0

∥∥∥ = Op(T−1/2) . (E.1)
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Proof. Using ‖e‖ = Op(N1/2) and ‖Xk‖ = Op(N) we find that the expansion terms in theorem 3.3
satisfy ∥∥∥M (1)

λ̂,e

∥∥∥ = Op(N−1/2) ,
∥∥∥M (2)

λ̂,e

∥∥∥ = Op(N−1) ,
∥∥∥M (1)

λ̂,k

∥∥∥ = Op(1) . (E.2)

Together with corollary E.1 the result for
∥∥Mλ̂ −Mλ0

∥∥ immediately follows. In addition we have
Pλ̂ − Pλ0 = −Mλ̂ +Mλ0 . The proof for Mf̂ and Pf̂ is analogous.

Lemma E.3. Under assumption 5 we have

A1 ≡
1
NT

N∑
i=1

T∑
t=1

e2
it

(
XitX

′
it − X̂itX̂

′
it

)
= op(1) , A2 ≡

1
NT

N∑
i=1

T∑
t=1

(
e2
it − ê2

it

)
X̂itX̂

′
it = op(1) .

(E.3)

Lemma E.4. Let f̂ and f0 be normalized as f̂ ′f̂/T = IR and f0′f0/T = IR. Then, under the
assumptions of theorem 4.4, there exists an R×R matrices H = HNT such that35∥∥∥f̂ − f0H

∥∥∥ = Op (1) ,
∥∥∥λ̂− λ0 (H ′)−1

∥∥∥ = Op (1) . (E.4)

Furthermore ∥∥∥λ̂ (λ̂
′
λ̂)−1 (f̂ ′f̂)−1 f̂ ′ − λ0 (λ0′λ0)−1 (f0′f0)−1 f0′

∥∥∥ = Op

(
N−3/2

)
. (E.5)

Lemma E.5. Under assumption 5 we have

(i) N−1
∥∥∥E(e′Mλ0Xk)− (ê′Xk)truncR

∥∥∥ = op(1) ,

(ii) N−1
∥∥∥E(e′Mλ0e)− (ê′ ê)truncD

∥∥∥ = op(1) ,

(iii) T−1
∥∥∥E(eMf0e′)− (ê ê′)truncD

∥∥∥ = op(1) . (E.6)

Lemma E.6. Under the assumption 5 we have

(i) N−1
∥∥∥(ê′Xk)truncR

∥∥∥ = Op(MT 1/8) ,

(ii) N−1
∥∥∥(ê′ ê)truncD

∥∥∥ = Op(1) ,

(iii) T−1
∥∥∥(ê ê′)truncD

∥∥∥ = Op(1) . (E.7)

The proof of the above lemmas is given in the supplementary material. Using these lemmas we
can now prove theorem 4.4.

Proof of Theorem 4.4, Part I: show Ŵ = W + op(1).
According to assumption 6 we have Wk1k2 = WNT,k1k2 + op(1), where

WNT,k1k2 = (NT )−1Tr(Xk1X
′
k2)

= (NT )−1Tr(Mλ0 Xstr
k1 Mf0 Xstr ′

k2 ) + (NT )−1Tr(Mλ0 Xstr
k1 Mf0 Xweak ′

k2 )

+ (NT )−1Tr(Mλ0 Xweak
k1 Mf0 Xstr ′

k2 ) + (NT )−1Tr(Xweak
k1 Xweak ′

k2 ) . (E.8)

In order to prove Ŵ = W + op(1), it is therefore sufficient to show Ŵk1k2 = WNT,k1k2 + op(1), where
Ŵk1k2 = (NT )−1Tr(X̂k1X̂

′
k2

) = (NT )−1Tr(Mλ̂Xk1 Mf̂ X
′
k2

). Using |Tr (C)| ≤ ‖C‖ rank (C) corollary

35We consider a limit N,T →∞ and for different N,T different H-matrices can be chosen, but we write H instead of
HNT to keep notation simple.
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E.2, and the result ‖Xweak
k1
‖ = Op(N−1) from Lemma D.1, we find∣∣Ŵk1k2−WNT,k1k2

∣∣
=
∣∣∣∣(NT )−1Tr

[(
Mλ̂ −Mλ0

)
Xk1 Mf̂ X

′
k2

]
+ (NT )−1Tr

[
Mλ0 Xk1

(
Mf̂ −Mf0

)
X ′k2

]
− (NT )−1Tr(Mλ0Xweak

k1 Pf0Xweak ′
k2 )− (NT )−1Tr(Pλ0Xweak

k1 Xweak ′
k2 )

∣∣∣∣
≤ 2R
NT

∥∥Mλ̂ −Mλ0

∥∥ ‖Xk1‖‖Xk2‖
2R
NT

∥∥∥Mf̂ −Mf0

∥∥∥ ‖Xk1‖‖Xk2‖

+
R

NT
‖Xweak

k1 ‖‖Xweak
k2 ‖+

R

NT
‖Xweak

k1 ‖‖Xweak
k2 ‖

=
2R
NT
Op(N−1)Op(NT ) +

2R
NT
Op(T−1)Op(NT ) +

2R
NT
Op(N)

= op(1) . (E.9)

This is what we wanted to show.

Proof of Theorem 4.4, Part II: show Ω̂ = Ω + op(1).
Let ΩNT = 1

NT

∑N
i=1

∑T
t=1 e

2
itXitX

′
it. First, we want to show that Ω = ΩNT + op(1). By definition

of Ω we have Ω = E (ΩNT ) + o(1). Thus, once we show for all k1, k2 = 1, . . . ,K that Var (ΩNT,k1k2) =
o(1) we are done.

Using cross-sectional independence of eit and Xweak
it , we find that conditional on Xstr

k (or alterna-
tively, treating Xstr

k as non-stochastic) we have

Var (ΩNT,k1k2) =
1

(NT )2

N∑
i,j=1

T∑
t,τ=1

[
E
(
e2
itXk1,itXk2,it e

2
jτXk1,jτXk2,jτ

)
− E

(
e2
itXk1,itXk2,it

)
E
(
e2
jτXk1,jτXk2,jτ

) ]
=

1
(NT )2

N∑
i=1

T∑
t,τ=1

[
E
(
e2
itXk1,itXk2,it e

2
iτXk1,iτXk2,iτ

)
− E

(
e2
itXk1,itXk2,it

)
E
(
e2
iτXk1,iτXk2,iτ

) ]

=
1

(NT )2

N∑
i=1


T∑

t,τ=1

E
(
e2
itXk1,itXk2,it e

2
iτXk1,iτXk2,iτ

)
−

[
T∑
t=1

E
(
e2
itXk1,itXk2,it

)]2


≤ 1
(NT )2

N∑
i=1

T∑
t,τ=1

E
(
e2
itXk1,itXk2,it e

2
iτXk1,iτXk2,iτ

)

≤ 1
N

√√√√ 1
N T 2

N∑
i=1

T∑
t,τ=1

E (e4
ite

4
iτ )

1
N T 2

N∑
i=1

T∑
t,τ=1

E
(
X2
k1,it

X2
k2,it

X2
k1,iτ

X2
k2,iτ

)
=

1
N
O(1) = o(1) , (E.10)

where we used that both e and Xk have uniformly bounded 8’th moments. Since the conditional
variance of ΩNT,k1k2 is o(1), the same is true for the unconditional variance by the law of iterated
expectations, so we have shown Ω = ΩNT + op(1).

We have ΩNT − Ω̂ = A1 +A2, where A1 and A2 are defined in Lemma E.3 and the lemmas states
that both A1 and A2 are op(1). Therefore we have ΩNT = Ω̂ + op(1), and thus also Ω̂ = Ω + op(1),
which is what we wanted to show.
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Proof of Theorem 4.4, Part III: show B̂1 = B1 + op(1).
Let B1,k,NT = N−1 Tr

[
Pf0 E

(
e′Xweak

k

)]
, and B̃1,k,NT = N−1 Tr

[
Pf0 E

(
e′Mλ0 Xweak

k

)]
. According

to assumption 6 we have B1,k = B1,k,NT +op(1). Applying part (f) of Lemma D.2 we obtain B1,k,NT =
B̃1,k,NT +op(1). So what is left to show is that B̃1,k,NT = B̂1,k+op(1). Using |Tr (C)| ≤ ‖C‖ rank (C)
we find ∣∣∣B̃1,k,NT − B̂1

∣∣∣ =
∣∣∣∣E [ 1

N
Tr(Pf0 e′Mλ0 Xk)

]
− 1
N

Tr
[
Pf̂ (ê′Xk)truncR

]∣∣∣∣
≤
∣∣∣∣ 1
N

Tr
[(
Pf0 − Pf̂

)
(ê′Xk)truncR

]∣∣∣∣
+
∣∣∣∣ 1
N

Tr
{
Pf0

[
E (e′Mλ0 Xk)− (ê′Xk)truncR

]}∣∣∣∣
≤ 2R

N

∥∥∥Pf0 − Pf̂
∥∥∥ ∥∥∥(ê′Xk)truncR

∥∥∥
+
R

N

∥∥Pf0

∥∥ ∥∥∥E (e′Mλ0 Xk)− (ê′Xk)truncR
∥∥∥ . (E.11)

We have
∥∥Pf0

∥∥ = 1. We now apply Lemmas E.5, E.2 and E.6 to find∣∣∣B̃1,k,NT − B̂1

∣∣∣ = N−1
(
Op(N−1/2)Op(MNT 1/8) + op(N)

)
= op(1) . (E.12)

This is what we wanted to show.

Proof of Theorem 4.4, final part: show B̂i = Bi + op(1), i = 2, 3.
Define

B2,k,NT =
1
T

Tr
[
E (ee′) Mλ0 Xstr

k f0 (f0′f0)−1 (λ0′λ0)−1 λ0′] ,
B̃2,k,NT =

1
T

Tr
[
E
(
eMf0e′

)
Mλ0 Xstr

k f0 (f0′f0)−1 (λ0′λ0)−1 λ0′] . (E.13)

According to assumption 6 we have B2,k = B2,k,NT + op(1). Applying part (g) of Lemma D.2 we
obtain B2,k,NT = B̃2,k,NT + op(1). What is left to show is that B̃2,k,NT = B̂2,k + op(1).

We can decompose B̂2 = B̂str
2 +B̂weak

2 , according to the decomposition of the regressors into weakly
and strictly exogenous part. As a consequence of Lemma D.1, i.e. ‖Xweak

k ‖ = Op(N1/2), of part (ii)
of Lemma E.6, and of Lemma E.4, we find that the weakly exogenous part of the regressors does not
contribute to B̂2 asymptotically, namely

B̂weak
2,k =

1
T

Tr
[
(ê ê′)truncD

Mλ̂X
weak
k f̂ (f̂ ′f̂)−1 (λ̂

′
λ̂)−1 λ̂

′]
≤ R

T

∥∥∥(ê ê′)truncD
∥∥∥∥∥Xweak

k

∥∥∥∥∥f̂ (f̂ ′f̂)−1 (λ̂
′
λ̂)−1 λ̂

′∥∥∥
=
R

T
Op(T )Op(N1/2)Op((NT )−1/2) = op(1) . (E.14)

We are left to consider the contribution from the strictly exogenous part of the regressor in B̂2. We
have

B̃2,k − B̂str
2,k =

1
T

Tr
[
E
(
eMf0e′

)
Mλ0 Xstr

k f0 (f0′f0)−1 (λ0′λ0)−1 λ0′]
− 1
T

Tr
[
(ê ê′)truncD

Mλ̂X
str
k f̂ (f̂ ′f̂)−1 (λ̂

′
λ̂)−1 λ̂

′]
=

1
T

Tr
[
(ê ê′)truncD

Mλ̂X
str
k

(
f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ − f̂ (f̂ ′f̂)−1 (λ̂

′
λ̂)−1 λ̂

′)]
+

1
T

Tr
[
(ê ê′)truncD (

Mλ0 −Mλ̂

)
Xstr
k f0 (f0′f0)−1 (λ0′λ0)−1 λ0′

]
+

1
T

Tr
{[

E
(
eMf0e′

)
− (ê ê′)truncD

]
Mλ0 Xstr

k f0 (f0′f0)−1 (λ0′λ0)−1 λ0′
}
. (E.15)
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Using |Tr (C)| ≤ ‖C‖ rank (C) (which is true for every square matrix C, see the supplementary mate-
rial) we find∣∣∣B̃2,k − B̂str

2,k

∣∣∣ ≤R
T

∥∥∥(ê ê′)truncD
∥∥∥∥∥Xstr

k

∥∥∥∥∥f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ − f̂ (f̂ ′f̂)−1 (λ̂
′
λ̂)−1 λ̂

′∥∥∥
+
R

T

∥∥∥(ê ê′)truncD
∥∥∥∥∥Mλ0 −Mλ̂

∥∥∥∥Xstr
k

∥∥∥∥f0 (f0′f0)−1 (λ0′λ0)−1 λ0′∥∥
+
R

T

∥∥∥E (eMf0e′
)
− (ê ê′)truncD

∥∥∥ ∥∥Xstr
k

∥∥ ∥∥f0 (f0′f0)−1 (λ0′λ0)−1 λ0′∥∥ . (E.16)

Here we used
∥∥Mf0

∥∥ =
∥∥∥Mf̂

∥∥∥ = 1. Using ‖Xstr
k ‖ = Op(

√
NT ), and applying Lemmas E.2, E.4, E.5,

and E.6, we now find∣∣∣B̃2,k − B̂str
2,k

∣∣∣ = T−1

[
Op(T )Op((NT )1/2)Op(N−3/2)

+Op(T )Op(N−1/2)Op((NT )1/2)Op((NT )−1/2)

+ op(T )Op((NT )1/2)Op((NT )−1/2)
]

= op(1) . (E.17)

This is what we wanted to show. The proof of B̂3 = B3 + op(1) is analogous.

F Proof of Theorem 4.7

Proof of Theorem 4.7.

• We have shown that the assumption of the theorem imply that assumption 7 holds. Showing
that WD∗NT has the limiting distribution χ2

r is therefore straightforward.

• For the LR test we have to show that the estimator ĉ = (NT )−1Tr(ê(β̂) ê′(β̂)) is consistent for
c = Ee2

it. As already noted in the main text we have ĉ = LNT

(
β̂
)

, and using our likelihood

expansion and
√
NT -consistency of β̂ we immediately obtain

ĉ =
1
NT

Tr(Mλ0eMf0e′) + op(1) . (F.1)

Alternatively, one could use the expansion of ê in theorem 3.3 to show this. From the above
result we find ∣∣∣∣ĉ− 1

NT
Tr(ee′)

∣∣∣∣ =
1
NT

∣∣Tr(Pλ0eMf0e′) + Tr(ePf0e′)
∣∣+ op(1)

≤ 2R
NT
‖e‖2 + op(1) = op(1) . (F.2)

By the weak law of large numbers we thus have

ĉ =
1
NT

N∑
i=1

T∑
t=1

e2
it + op(1) = c+ op(1) , (F.3)

i.e. ĉ is indeed consistent for c. Having this and using theorem 4.6 one immediately obtains the
result for the limiting distribution of LR∗NT , as already discussed in the main text.

• For the LM test we use equation 4.18 and W̃ = W + op(1), Ω̃ = Ω + op(1), and B̃ = B + op(1)
to obtain

LM∗NT −→
d

(C −B)′W−1H ′(HW−1ΩW−1H ′)−1HW−1(C −B) . (F.4)

Under H0 and assumption 7 we thus find LM∗NT →d χ
2
r.

40



• In order to show that LM∗NT has the same limiting distribution we only need to show that√
NT ∇̃LNT =

√
NT∇LNT (β̃) + op(1). Using the expansion of ê in theorem 3.3 one obtains

√
NT (∇̃LNT )k = − 2√

NT
Tr (X ′kẽ)

=
[
2
√
NT WNT

(
β̃ − β0

)]
k

+
2
NT

C(2)(λ0, f0, Xk, e) +
2
NT

C(3)(λ0, f0, Xk, e)

− 2√
NT

Tr
(
X ′kẽ

(rem)
)

=
[
2
√
NT WNT

(
β̃ − β0

)
+

2
NT

CNT

]
k

+ op(1)

=
√
NT

[
∇LNT (β̃)

]
k

+ op(1) , (F.5)

which is what we wanted to show. Here we used that |Tr
(
X ′kẽ

(rem)
)
| ≤ 7R‖Xk‖‖ẽ(rem)‖ =

Op(N3/2). Note that ‖Xk‖ = Op(N), and theorem 3.3 and
√
NT -consistency of β̃ imply

‖ẽ(rem)‖ = Op(
√
N). We also used the expression for ∇LNT (β̃) given in theorem 3.2, and

the bound on ∇RNT (β) given there.
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Tables with Simulation Results

ρ = 0.3 ρ = 0.6
OLS QMLE BC-QMLE OLS QMLE BC-QMLE

T = 5, M = 2 bias 0.1257 -0.1470 -0.0640 0.0807 -0.2080 -0.1169
std 0.1462 0.1435 0.0907 0.1195 0.1789 0.1253
rmse 0.1929 0.2054 0.1110 0.1442 0.2743 0.1713

T = 10, M = 3 bias 0.1337 -0.0549 -0.0175 0.0918 -0.0596 -0.0236
std 0.1125 0.0577 0.0404 0.0896 0.0679 0.0458
rmse 0.1748 0.0796 0.0441 0.1283 0.0903 0.0515

T = 20, M = 4 bias 0.1443 -0.0261 -0.0057 0.1015 -0.0253 -0.0070
std 0.0875 0.0278 0.0236 0.0691 0.0280 0.0216
rmse 0.1688 0.0381 0.0242 0.1228 0.0378 0.0227

T = 40, M = 5 bias 0.1511 -0.0129 -0.0018 0.1083 -0.0114 -0.0017
std 0.0653 0.0167 0.0158 0.0514 0.0154 0.0138
rmse 0.1646 0.0211 0.0159 0.1199 0.0192 0.0139

T = 80, M = 6 bias 0.1552 -0.0066 -0.0006 0.1125 -0.0057 -0.0006
std 0.0487 0.0112 0.0110 0.0382 0.0096 0.0092
rmse 0.1627 0.0130 0.0110 0.1188 0.0112 0.0093

Table 1: Simulation results for the AR(1) model described in the main text with N = 100, ρf = 0.5, and σf = 0.5. The
OLS estimator, QMLE, and bias corrected QMLE (BC-QMLE) were computed for 10,000 samples. The table lists the
mean bias, the standard deviation (std), and the square root of the mean square error (rmse) for the three estimators.

ρf = 0.3 ρf = 0.7
OLS QMLE BC-QMLE OLS QMLE BC-QMLE

σf = 0 bias -0.0007 -0.0108 -0.0059 -0.0007 -0.0108 -0.0059
std 0.0180 0.0367 0.0256 0.0180 0.0367 0.0256
rmse 0.0180 0.0383 0.0263 0.0180 0.0383 0.0263

σf = 0.2 bias 0.0156 -0.0131 -0.0037 0.0475 -0.0344 -0.0098
std 0.0253 0.0294 0.0223 0.0381 0.0352 0.0249
rmse 0.0297 0.0322 0.0226 0.0609 0.0492 0.0267

σf = 0.5 bias 0.0568 -0.0142 -0.0042 0.1487 -0.0404 -0.0120
std 0.0622 0.0258 0.0208 0.0767 0.0297 0.0229
rmse 0.0843 0.0295 0.0212 0.1673 0.0502 0.0259

Table 2: Simulation results for the AR(1) model with N = 100, T = 20, M = 4, and ρ = 0.6. The three different
estimators were computed for 10,000 samples, and the mean bias, standard deviation (std), and root mean square error
(rmse) are reported.
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M = 2 M = 4 M = 6 M = 9 M = 12 M = 15
ρ = 0 0.875 0.779 0.710 0.625 0.559 0.512
ρ = 0.3 0.754 0.777 0.710 0.622 0.555 0.507
ρ = 0.6 0.593 0.731 0.679 0.595 0.529 0.484
ρ = 0.9 0.295 0.480 0.513 0.492 0.446 0.405

Table 3: Simulation results for the AR(1) model with N = 100, T = 20, ρf = 0.5, and σf = 0.5. For different values
of the AR(1) coefficient ρ and of the bandwidth M , we give the fraction of the QMLE bias that is accounted for by the

bias correction, i.e. the fraction
√
NT E(β̂ − β)/E(Ŵ−1B̂), computed over 10,000 samples.

size size
WD LR LM WD∗ LR∗ LM∗

ρ0 = 0 N = 100, T = 20, M = 4 0.219 0.210 0.195 0.069 0.063 0.059
N = 400, T = 80, M = 6 0.205 0.203 0.199 0.054 0.053 0.053
N = 400, T = 20, M = 4 0.560 0.549 0.533 0.095 0.090 0.083
N = 1600, T = 80, M = 6 0.591 0.588 0.584 0.056 0.055 0.055

ρ0 = 0.6 N = 100, T = 20, M = 4 0.321 0.303 0.273 0.092 0.080 0.073
N = 400, T = 80, M = 6 0.261 0.257 0.250 0.052 0.049 0.052
N = 400, T = 20, M = 4 0.609 0.595 0.572 0.175 0.161 0.141
N = 1600, T = 80, M = 6 0.668 0.663 0.658 0.063 0.060 0.062

Table 4: Simulation results for the AR(1) model with ρf = 0.5 and σf = 0.5. For the different values of ρ0, N , T and

M we test the hypothesis H0 : ρ = ρ0 using the uncorrected and bias corrected Wald, LR and LM test and nominal size
5%. The size of the different tests is reported, based on 7,500 simulation runs.

power power
WD LR LM WD∗ LR∗ LM∗

ρ0 = 0 N = 100, T = 20, M = 4 H left
a 0.094 0.087 0.076 0.131 0.122 0.123

Hright
a 0.523 0.510 0.486 0.233 0.221 0.206

N = 400, T = 80, M = 6 H left
a 0.062 0.061 0.059 0.150 0.149 0.150

Hright
a 0.547 0.544 0.538 0.196 0.193 0.193

N = 400, T = 20, M = 4 H left
a 0.301 0.292 0.280 0.103 0.098 0.100

Hright
a 0.796 0.789 0.776 0.304 0.293 0.276

N = 1600, T = 80, M = 6 H left
a 0.244 0.242 0.239 0.135 0.133 0.135

Hright
a 0.870 0.867 0.865 0.216 0.213 0.213

ρ0 = 0.6 N = 100, T = 20, M = 4 H left
a 0.189 0.169 0.144 0.175 0.156 0.164

Hright
a 0.633 0.617 0.581 0.341 0.315 0.298

N = 400, T = 80, M = 6 H left
a 0.078 0.076 0.072 0.175 0.199 0.205

Hright
a 0.681 0.676 0.671 0.341 0.265 0.271

N = 400, T = 20, M = 4 H left
a 0.436 0.422 0.395 0.175 0.155 0.153

Hright
a 0.798 0.792 0.778 0.341 0.431 0.409

N = 1600, T = 80, M = 6 H left
a 0.318 0.313 0.307 0.205 0.167 0.172

Hright
a 0.914 0.911 0.909 0.272 0.314 0.319

Table 5: As table 4, but we report the power for testing the alternatives Hleft
a : ρ = ρ0 − (NT )−1/2 and Hright

a : ρ =
ρ0 + (NT )−1/2.
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size corrected power size corrected power
WD LR LM WD∗ LR∗ LM∗

ρ0 = 0 N = 100, T = 20, M = 4 H left
a 0.013 0.012 0.011 0.106 0.105 0.112

Hright
a 0.216 0.218 0.211 0.195 0.196 0.193

N = 400, T = 80, M = 6 H left
a 0.008 0.008 0.008 0.145 0.144 0.145

Hright
a 0.251 0.251 0.250 0.188 0.187 0.188

N = 400, T = 20, M = 4 H left
a 0.006 0.006 0.006 0.056 0.054 0.063

Hright
a 0.177 0.173 0.172 0.203 0.203 0.199

N = 1600, T = 80, M = 6 H left
a 0.006 0.005 0.006 0.125 0.126 0.129

Hright
a 0.237 0.235 0.236 0.204 0.205 0.204

ρ0 = 0.6 N = 100, T = 20, M = 4 H left
a 0.010 0.011 0.012 0.109 0.110 0.126

Hright
a 0.200 0.206 0.200 0.237 0.239 0.239

N = 400, T = 80, M = 6 H left
a 0.005 0.005 0.005 0.200 0.200 0.200

Hright
a 0.297 0.296 0.296 0.266 0.266 0.265

N = 400, T = 20, M = 4 H left
a 0.014 0.015 0.015 0.034 0.038 0.050

Hright
a 0.124 0.123 0.121 0.191 0.191 0.202

N = 1600, T = 80, M = 6 H left
a 0.004 0.005 0.005 0.149 0.150 0.149

Hright
a 0.223 0.223 0.224 0.288 0.288 0.288

Table 6: As table 4 and 5, but we report the size corrected power.
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