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1. Introduction

In the last five years substantial improvements in our undeding of and ability to forecast finan-
cial volatility has been possible through the harnessingigti frequency financial return data. The
key developments have been the use of estimators of quadaaiation, (e.g. Andersen, Bollerslev,
Diebold & Labys (2003) and Barndorff-Nielsen & Shephard(2)) and making sense of their prop-
erties when applied to 5 to 30 minute return data. A weaknéhsexisting methods is their inability
to deal with market microstructure effects whose effeatskay when we use returns recorded over
very short time intervals. Interesting recent innovatitimat improve our comprehension of this
topic include Ait-Sahalia, Mykland & Zhang (2003), BandiRussell (2004), Hansen & Lunde
(2006, 20048), and Zhang, Mykland & Ait-Sahalia (2004).

The problem of estimating the quadratic variation is, in samays, similar to the estimation of
the long-run variance in stationary time-series. So it issupprising that the literature has studied
estimation methods that are well-known from the literatumecovariance estimation, including pre-
whitening methods, likelihood-based estimators, andeélegstimators. For example, the popular
realized varianc€RV) is analogous to the sum-of-squares variance estimatorauBectheRV is
sensitive to market microstructure noise it is recommeridagse sparse sampling in practice, and
the optimal sampling frequency is derived in Bandi & Rus&2ll04) and Zhang et al. (2004). The
moving average filter used by Andersen, Bollerslev, DieldoEbens (2001) and the autoregressive
filter used by Bollen & Inder (2002), are estimators that usevphitening techniques, and Bandi
& Russell (2004) analyze optimal sampling of pre-whitenieserLikelihood-like estimators include
the maximum likelihood estimators of Ait-Sahalia et aD@3) who use a homogeneous diffusion
model framework and the GMM estimator of Oomen (200@ho use a pure jump model. The
subsample estimator of Zhang et al. (2004) stands out astiiexisting nonparametric estimator
that is consistent, and its analog for estimation of thedamgvariance was introduced by Carlstein
(1986).

Our focus will be on kernel-based estimators. This litakatwas started by Zhou (1996) who
proposed a particular kernel estimator, which only incaapes the first-order autocovariance. This
suffices for unbiasness under “independence noise” wherpdpulation value of higher-order au-
tocovariances are zero. Hansen & Lunde (2006, Bp@dimarily use kernel-based estimators to
characterize properties of market microstructure noisenddn & Lunde (2006) use the estimator
of Zhou (1996) to construct a test for “independent noisaf provide empirical evidence of time-

dependence in the noise when return data are sampled ahigltrdrequencies, such as every few
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ticks. Hansen & Lunde (20} analyze the properties of realized variance under geasglmp-
tions about the noise and derive a particular unbiased kestienator, that can be used to uncover
the time-dependence in the noise. Thus, the existing tite¥aon kernel estimators has either fo-
cused on that based on the first-order autocovariance, sae(ZB96), or used particular unbiased
kernels to analyze and characterize features of markebsiracture noise, see Hansen & Lunde
(2006, 20048).

In this paper we provide the first systematic study of kebeeed estimators of the integrated
variance in the presence of market microstructure noise dévee the optimal kernel-based esti-
mator under an assumption that the noise is without mematyratependent of the efficient price,
an assumption which is empirically reasonable at modenaie $cales such as 1-minute returns in
highly liquid markets. Even though second and higher-oedgocovariance are known to be zero
under this assumption, we show that it pays off to estimagseh This makes it possible to derive
kernel-based estimators that are far more precise tharmtifhizhou (1996). However, we also
show that there does not exist a consistent regular keasadebestimator, so there is a limit to the
precision of regular kernel-based estimators. Interghtinve show that the consistent subsampling
estimator of integrated variance by Zhang et al. (2004)dsetdy related to a particular kernel-based
estimator. Importantly, it turns out that the differenceviEen regular kernel estimators and the
subsampling estimator, generateddnd effectsis crucial for the consistency of the subsampling
estimator. This observation allows us to propose a modifegdek-based estimator which is consis-
tent. We study the efficiency of the new class of estimatodsfiaual its rate of convergence to be the
optimal ratem'/#, wherem is the number of intraday returns, see Stein (1987) and Gfoflacod
(20013, 2001b). So this rate is as good as the rate that can be athtayna maximum likelihood
estimator under more restrictive distributional assuongifor the noise.

In Section 2 we detail our assumptions about the noise, @ffigirice process and sampling
scheme. In Section 3 we detail one of our main contributiarsgjstematic analysis of the properties
of regular kernels. In Section 4 we related subsamplingnestirs to Bartlett-style regular kernels,
and we see the difference is due to end conditions. In Sestiemintroduce the new modified kernel
estimator and study its properties. In Section 6 we draw sconelusions. A lengthy Appendix

provides the proofs of the results given in the paper.
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2. Assumptions
2.1. Price Process and Noise

Without loss of generality we assume that the observed prioceess is given by
p(t) = p*(t) +u(), te[0,T], (1)

where we labelp* as the efficient price process andas the noise process. We assume that the
efficient price is given from the simple diffusion modelp*(t) = o (t)dw(t), wherew(t) is a
standard Wiener process that is independerfit-6ft) }/_,, and we make the following assumptions

about the noise process.

(N) The noise processhas mean zero, variana@ = E[u?(t)] < oo, and kurtosis = E[u*(t)]/w*

< 00. Moreover,u(s) 1L p*(t) forall s,t € [0, T]andu(s) 1L u(t) for all s # t.

There is plenty of empirical evidence agairikl) when prices are sampled at ultra-high fre-
quencies, such as every few ticks, see Hansen & Lunde (2008pb2who show thau is neither
time-independent nor independentpst On the other hand, Hansen & Lunde (2006) also note that
there is little evidence against (the implications @f) when prices are sampled at more moderate
frequencies such as every 15 ticks. Because the analysisnieemuch more complicated uf is
time-dependent, all our results are derive usiNg. So our results may not apply to tick-by-tick
data. The advantage of our strategy is that it will productearcut analysis of the core issues of
kernel-based estimators.

Equation (1) may be viewed as a (Beveridge-Nelson type) rdposition, wherep* and u
represent the persistent component and transitory comporespectively. So the volatility of
p(t + s) — p(t) is well approximated by that op*(t + s) — p*(t) whens is large Thus, the
volatility of p* is the appropriate object of interest, even for the reader iwlexclusively interested
in the volatility of p (whetherp is autocorrelated or not).

Without loss of generality we consider the unit interval iofi¢, [0, 1], that is divided intom
sub-intervalsi m —ti_1m, i = 1,..., m, (to,m = 0 andt,, , = 1). The innovations irp*, p, andu

over each of the sub-intervals are defined byjfer1, 2,..., m,

Yim= P tim) — P*ticam),  Yim = P(tim) — P(ticam),  €m = U(tim) — U(ti—1m).

We will refer toy*,, andy; m as intraday returns, and we note thah = Y, + & m.
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We define the integrated variance

1
IVE/ a?(s)ds,
0

which is the object we would like to estimate. Our assumjsti@nout the efficient price implies that
IV =", 02, wherec? =var(y;).*i = 1,...,m.Infact we have thay; .....yn , are
independent and Gaussian distributgti~ N (O, aﬁm), (conditionally on{o?(s)}L_). Throughout

we make the following assumptions about the volatility path

(V) The volatility is (pathwise) continuous on,[0)], strictly positive, and satisfies
m
M2 " lo" (S.m) — 0" (8.m)| = 0(D),
i=1
for somer > 0 (equivalently for alr > 0)?> wheres , and§ , are arbitrary points in the

interval fti_1m, timl, 1 =1,...,m.

2.2. Sampling Scheme

We make the following assumption about the sampling tirggs,ti.m, - - . , tn.m, Where we usé¢a]

to denote the smallest integer greater than or equal to

(T) It holds that sup.(g 1) Itrsmi.m — T(S)| = o(m™Y), wheret is continuous and differentiable

function,z(0) = 0 andz(1) = 1, and O< 7/(s) < oo for all s € [0, 1].

The special case where the price observations are equitiistame, corresponds ), =i/m,
in which caser(s) = sandz’/(s) = 1. Mykland & Zhang (2005) use a similar framework for
sampling times, see also Barndorff-Nielsen & Shephard §20Given(T) we have the following

result that corresponds to AssumptiorvAn Mykland & Zhang (2005).

Lemma 1. Given(T) it holds that

fmhiam gLy — 0,

lim sup Tm

m—o00 1§i§m

Also key for our analysis is the (time-deformed) integragedrticity,

1
IQE/ 7' (s)o*(s)ds,
0

1Al population moments are made conditional on the stodhasiatility process,{az(s)}%zo, which defines our

object of interest. To simplify notation we use the convemtt (-) = E(~|{02(s)}%:0) , and similar for va¢-), and co\-).
2See Barndorff-Nielsen & Shephard (2003).
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and it holds tham Y\, o' = 1Q 4 o(1), whereo ' = (07,)? see Lemma A.2 in the appendix.
An interesting sampling scheme is that whe(s) is the solution tofot(s) o?(r)dr = s-1V, such

thataﬁm = IV/ mforalli = 1,..., m. We refer to this as Business Time Sampling (BTS), see

Oomen (2004, 2004b). As noted by Hansen & Lunde (2006), BTS minim@e= fol 7/(8)o*(s)ds =

IVZ, as the implicit function theorem shows thats) = IV / o%(s) under BTS.

(T") Condition(T) holds witht'(s) = IV / 6%(s).

3. Properties of Regular Kernel-Based Estimators

We consider the family oRV-estimatordRY, : w € R™} given by

m-1 m—h
RV, = wojo + 22 Wh'h, wherey,, = Z YViVienforh=0,...,m—1,
he1 i1

and we call this the class oégular kernels These types of statistics are familiar from the litera-
ture on covariance stationary processes, where they adgasstimate the long-run variances and
covariances. Leading examples of this include Newey & WE387) and Andrews (1991). This
theory is not directly applicable here as our in-fill asyntigtis entirely different from the con-
ventional setup. Further, the market microstructure nmiseur problem will induce a particular
autocovariance structure that we will use to charactehizekernels that provide good estimates of
thelV.

Examples of kernel-based estimators for estimation ofjnatted variance from high-frequency
data include those by Zhou (199&),(= 0 for h > 2), Hansen & Lunde (2003) (w, = (m+h)/m
forh < [pm] 0 < p < 1), and Hansen & Lunde (2003, 2084(Bartlett kernel). Interestingly, we
will show in Section 4 that the subsample-based estimatghahg et al. (2004) is almost identical
to a Bartlett-type kernel estimator. However, the feathia takes the subsample estimator dis-
tinct from any kernel estimator turns out to be very inforiveabout the estimation problem, and
suggests a modified class of kernel estimators. We will $pisllout in Section 5.

Since any kernel-baseéRV is a linear combination oy = (7, 274, ..., 27 n_1) , We can study
the properties oR\{, from the properties ofy.

For anym x m matrix A = {a; }{f‘j _, and any function f, that is integrable on [0L] we define

the operatorf — I (A, f), which yields them x m matrix with elements

l .
{I(A, f)}irf‘j:1 = Ajj /0 v, (s) f(s)ds, whereyj; = max(:T,]J)—l,
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and

1 fors ,1—
VS = €lp o]

otherwise.

NI

When f (s) = c for all s, we writel (A, ¢) = I (A, f) and note that(A, ¢) = cl (A, 1) and that
{IA, O} 21 = Aij (L —uj)c.

Theorem 2. Given(N), (V) and(T), then E¥') = (IV 4+ 2mw?, —(m — 1)202, 0, ..., 0) and
cov(d) = 1A, 0Hm — 20'C + »?I (B, 0?) + 1 (C, 0*t) 2 + Ho(3),

where the mx m matrices (assuming = 3) are given by

12 -16 4 0 --- 8 -8 0 0 -
~16 28 —-16 4 - 8 16 -8 0

A = 4 -16 24 -16 -. |. B=| 0 -8 16 -8 -. |.
0 4 -16 24 - 0O 0 -8 16
C = diag2 4,4,4,...), H=diagl,1,23,4,...).

Remark 1. The matrixH has a lower-right element of m1, such thaHo(3) is not o 2). However,
for the first q autocovariances, where q is a fixed number th@nder term for this submatrix of
cov(4) is simply Q%), because all terms of this submatrix are at mo(s,%p: o(%). Later where

we let g= gn — oo as m— oo, the last terms is oqam).

Remark 2. The variance simplifies considerably undd¥) where I\V? = IQ, in which case we

have that

cov(y) = (Am — 2C)w” + Bw?IV + CLIV?,

where
-1 )
12 —1eml  4m=2 0
—1 —1 -2 -3
—1655 28T —16Mns 4T
A = — —2 —2 2 —3 ..
A=1AD = gm-z 1Mz 24m2 _j6m3 .. |,
3 3 -3
0 455 167 24TF
and similar forB andC. ThusA;; = (1 — 4j)Ajj; = %L”“Aij foralli,j=1,...,m.

7
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Remark 3. Theorem 2 is formulated for the case where- 3. The result for the general case where

K is arbitrary, requires the upper left x 2 submatrix ofA to be written as

e —4(k + 1)
—4(k + 1) 4(k + 4)

whereas all other elements Afare unchanged, see the proof of Theorem 2. Restricting oemtén
to the case where = 3 has no important implication for our analysis, because ttes Iproperties
require thatwg, w; — 1 as m— oo, which eliminates the-terms in A(sincedx + 4(x + 4) —

8(k + 1) = 8 does not involve, see Hansen & Lunde (2006)).

Several results in the existing literature now follow ascéplecases of Theorem 2. #2 = 0
we have the result by Jacod (1994) and Barndorff-Nielsen &pBhrd (2002) that veRV(™) =
2IQ1+0(:), see also Jacod & Protter (1998). Wheh> 0 we have the expressions bigy™) =
2mw? and varRV'™) = 12mw* 4 O(1) by Bandi & Russell (2004) and Zhang et al. (2004). More
generally we have the following result by Hansen & Lunde @aat vatRVI™) = (12m—4)w*+
8?1V +2IQ2 + o(2), and the result by Zhou (1996) that @M{) = (8M — 12)w” + 802V +
6IQ2 +o(2). for RUE = 74 + 27, which now follows from Theorem 2 as special cases.

The interesting aspect of Theorem 2 is that adding estinwdit@stocovariance terms (that have
a population value that is known to be zero) can increase tbeigion whenevew? > 0. The
following Corollary contains results for the cases wherme $hcond and third autocovariances are
included, using weights that minimize the asymptotic vaz&a For notational convenience we
definev, = [ o?(s)ds+ fl{p o?(s)dsand we note thatn = 0§ +---+0f + 05 g+ +05

for integers oth.

Corollary 1. Define RYZ = 7o+27147 2. RUe. = 7o+27 1+ L2+ 275. Under the assumptions

of Theorem 2 both estimators have biaRef while

varRVY) = 2mo’ + 40V + 7IQE + 20%(v2 + 0?) + o(),

m) 4.0 4, 68 2 208~ 1 21 2 12 2 98 4 1
Var(R\/A<C3) = o™+ ZolV + 52104 + 855w v2 + 8555w Vs + 550 +0(55)-

Corollary 1 shows that by adding (a linear combination ofheir-order autocovariances can
reduce the variance without affecting the bias (fosufficiently large), as the higher-order terms
(or linear combination of these) have a zero mean and ardinelgacorrelated withy, + 2y, such

that adding a proper linear combination will lead to a reduncof the total variance.
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The linear combinations of the higher-order autocovaegartbat were included in Corollary 1,
1y, and§;>2+ gfzg, where chosen in order to minimize the asymptotic varianatisof ordemw*m.
This also led to a reduction of the variance term that is oéona’ (from 8 to 4 andg—g timesw?lV
respectively), whereas tma~!-variance term was increased, and the last observatiotidtitghthe
need to study all terms in our analysis of kernel-based estirs.

For notational convenience we defiivg, = fol wp(s)az(s)dsandep = fol xpp(s)a4(s)ds, and
we note thatV — IV, = 3v,, and thatlQ —1Q, = O(p), such that: (1Q — 1Qn) = O(L) = o(d).
Corollary 2. Letw = (wq, ..., wm_1)". The bias of Ry is given by

biagRW,) = (wo — DIV + (wo — =2wy)20°m = W (IVd + 2me?*f) — IV,
whered = (1,0, ..., 0) andf = (1, —mT*l, 0,...,0); whereas the variance is given by
var(RV,) = Vio'm + Voo? + V_13 + o(2),

where

m-1
Vi(w) = 12w8 + m?_1w14(7w1 — 8wp) + JZ:Z %wJS(Swj —4wj_1+wj_2)

3o

4 2 U
~mW%Wo T .lej’
J=

m—1 m—1
Vow) =8Vwg + Y 16V wj(wj —wj_1), and V(W) =2IQui + Y 4IQ; wf.
J:l m le m

Thus, V; = o(%) is a necessary condition for the varianceRd¥, to vanish, andwy — 1

asm — oo is clearly required folR\, to be generally consistent fo¥. While there are other

requirements, such a% = o(1) andV_; = o(m), we shall initially focus on the requirement that

Vi = o(%), which appears to be the most stringent requirement. Foré¢hson, we seek the kernel

that minimizesV,(w) subject to the constraint thaiy = 1.
Theorem 3 (Variance Bound for Regular Kernel-Based Estimatrs). The solution to
w* = arg minVi(w), subject towg = 1,
weRM
is given byw* = (1, wy)" wherew; = —M 2‘21M »1 and M, and M »; are submatrices of

_ M M
Am— 26 — 11 Mo ’
M21 Ma2p

with dimensiongm — 1) x (m — 1) and(m — 1) x 1, respectively. Further, it holds that

mVL(w*) = w”(Am — 2C)w* — 4, as m— oo.
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Theorem 3 shows that it is not possible to drive the variafigeregular kernel-based estimator
to zero, asn — oo. The result shows thatsf is a lower bound for the asymptotic variance. So the
existence of a consistent regular kernel-based estimatoiled out While consistency is clearly
important, it is worth noticing that the non-vanishing eace term, 4%, is likely to be very small
in practice. For example, Hansen & Lunde (2006) estimét® be of an order in the neighborhood
of 1078 for the stocks of the Dow Jones Industrial Average. Consistés convenient because it
justifies thes-method, such that a central limit theorem (CLT) for(agy), say, follows from a CLT
for w'4. Naturally, if 4»* is negligible relative to vaw'4), the distortions from using th&method
to approximate the distribution of log’4), say, will be extremely modest. Nevertheless, the mere
existence of consistent estimator — the subsample estimb#hang et al. (2004) — does challenge
the usefulness of regular kernel-based estimators. Saifotlowing two sections we shall study
the subsample-based estimator and a modified class of Kesieet estimators, where the latter is
motivated by the relation between the subsample estimatbaaarticular kernel-based estimator.
But first we evaluate how far we can push the precision of sedgkdrnel-based estimators.

Theorem 3 provides a lower bound for the asymptotic variaricegular kernel-based estima-
tors, derived fromV;. Since the variance also involves the terigandV_; it is unclear whether
this bound can be obtained by any kernel. This question iseaddd by the following Lemma that
gives a simple example of a schemeviowhich achieves the lower bound. This estimator is almost
identical to that introduced to this context by Hansen & Lenga003), and later applied by Hansen
& Lunde (2004).

Lemma 4. Consider the Bartlett-type kernel, where the elementggodre given by
wO:mT‘qu’l, w; :qq;j forj=1,...,9, wj=0 forj>aq,
wherewg = %wl in order to eliminate the bias. GiveiN), (V), and (T') it holds that
2
Vi=42+0(z5), Vo=0(). Voi=0(),

such thatvar(RVy,) = 4w* + O(q—”;) + O(&), which tends todw* provided that gm — 0 and

g’/m — ocoas g m — oo.

From Lemma 4 it follows that the optimal rate = gy, = O(m??) in which case vaiRVy,) =
40* + O(m~1/3). Since the Bartlett-type kernel in Lemma 4 achieves the Idwend, it is asymp-

totically efficient in the class of regular kernel estimator

SWhile consistency does not require the variance to vanighsistency is indeed ruled out in the present setting,

becausey/k (to be defined later) does not vanish in probability.

10
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3.1. Bias Eliminating Regular Kernels

Lemma 5. We define. = «?/IV,
%, =(Am—2C)A*+Br+CL and E; = (d+ 2maf)(d + 2maf),

whered andf where defined in Corollary 2. Under the assumptions of Thre&eand(T"), we have

that MSE(RV,,)/IV2 = W/ (Z;, + Z)wW — 2w/ (d + 2maf) + 1.

While Lemma 5 is useful in order to evaluate the MSE for a gkemel estimator, it does not
constitute a useful way to define an optimal kernel, suchv’as= arg min, MSE(R\,) = (X, +
2,)71(d + 2maf), because such a kernel would be extremely sensitive to saditions inx.*
Instead we restrict attention to kernels for which = m?‘lwl andwy — 1 asm — oo. These
restrictions guarantees that the resulting estimatoryimptotically unbiased, as can we verified
from E(4) that was stated in Theorem 2. Note that the Bartlett-typeddén Lemma 4 satisfies this
criterion. The reason that we do not impose the constiajnt 1, is that the MSE may be reduced
by allowingwg to be slightly smaller than one, (i.e. trading a small (dowarug) bias for a reduction

of the variance).

We define than — 1 x 1 vector,v = (v, ..., vm_1)’ = Dw, whereD is them — 1 x m matrix
given by
-1
1 %= 0 0
O 0 1 o
D= ,
0O 0 0 1

and solve the constrained optimization problem, miDX; D'v s.t. w, = 1, using the same tech-
nique as in Theorem 3. Thus we determije= —M 2‘21M »1, whereM ,, andM ,1 are submatrices

of DX, D', and define the kerneV; = (1, -, v3')".

> m—1°

FIGURE 1 ABOUT HERE
Elements ofv* plotted against/./m (x-axis: [0, 2])
m =78, 390 1560 and 1 = 0.01, 0.001

4This issue can be understood by considering the kernel giyemg = IV /(IV +202m) = 1(14 2.m) andwp =0
for h > 1. Foram = 4.5 we havewg = 1/10, which is unbiased if indeedm = 4.5, but can be severely biased for other

values ofx.

11
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Although our kernel is derived under the independent nasaraption, we note that the kernel
has some degree of robustness to mild time dependence iite process. Time dependence in
the noise process causes higher-order covariances to haspacted value that is different from
zero, since the kernel above has > 0, fori = 2, 3,... it is somewhat capable of capturing this
deviation from the indpendence assumption.

The rate at which the variance MV; converges to4* can be determined numerically from an
ancillary regression and we find this rate torbe'/2. We describe the ancillary regressions towards

the end of Section 5.

4. Subsample-Based Estimator

Zhang et al. (2004) have proposed a very stimulating subsabgsed estimator of integrated vari-
ance. In an unpublished paper Miller (1993) also studiedude of subsampling to estimate the
variability of financial prices. His motivation was the saaseZhang et al. (2004), but his analy-
sis was much less formalized, so we will focus entirely ondbetribution of Zhang et al. (2004).
The subsample estimator can be constructed from the @rig {to, to, ..., tn}, > and the (non-

overlapping) subgrids,
gkj = {tj_l, tj_1+k, ey tj—l—i—cjk}a for j =1,...,k Wherecj = Lm_TM'J s

and |a| denotes the largest integer that is smaller than or equal $o the subgrids are such that
G NGy, =W fori # jandG = UT=1 Gx; for anyk < m. For each subsample we can calculate the
realized variance
Rngj = Z yt?-,twk’ Whereyti-,ti+k = Py — P>
ti €0k
with the convention thag «, = 0 if j > m. Thek-subsampling estimator by Zhang et al. (2004) is
given by

RVouy, = RV, — ToEERV,
whereRV, = i ZT:l RV, -
Theorem 6. It holds that

RV =70+ > PG n+ 70 — i

5In the following we will often suppress the subscriptto simplify our expressions.

12
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whereh =0andfc =1+ (Y1 + - + Ye)? + Ymekiz + - + Ym? fork > 2.
SinceRV; = 7 it follows thatRVeup, = W, ¥ — '/ K, Where

m—k+1 k-1 k-2

mk ° k ° 9 ey

Wsup, = (1 -

=

aoa-~-,0),,

and it is very interesting that the subsample-based esimmatlmost identical to the kernel-based

estimator that employs this Bartlett-type kernel. The dtifference is the presence igf

Remark 4. Theorem 6 provide a way to implement the subsampling estiniecause Ry, (for

any k) can be calculated from the empirical autocovarianaed the recursive formula fokr

Remark 5. The close relationship between &Y and kernel-based estimators, stems from the fact
that y, ¢, = Yiq1 + - - + Yitk, such that Ry is simply a linear combination of cross products of
intraday returns, ymyjm. i, ] = 1,..., m, as is the case for all kernel-based estimators. That the
subsample estimator is closely related to the Bartlett &kisiperhaps not too surprising, because
Bartlett (1950) motivated his kernel with the subsamplidegai, see also Anderson (1971, p. 512)
and Priestley (1981, pp. 439-440). Interestingly, Pqlilomano & Wolf (1999) noted that the
subsample estimator (of the long-run variance) of Cans{@i986) is identical to both the moving
block bootstrap estimator and the Jackknife estimator ia tase, see #hsch (1989) and Liu &
Singh (1992). Further, the tern%,rk, that makes Ry, distinct from kernel-based estimators is
related to theend effectssee e.g. Priestley (1981, p. 440).

Remark 6. A really surprising result of Theorem 6 is th%tk, which is innocuous in the context
of conventional stationary time series, is indeed cruamlthe consistency of Ry, . Zhang et al.
(2004) show thalimp,_, o, var(RVsup) = O for a suitable choice of k= kn,. So%rk is responsible for
the increased precision beyond the lower boukl}, that we established for regular kernel-based

estimators in Theorem 3.

5. Modified Kernel-Based Estimators

Having understood the connection between a regular kestieh&or and subsampling and gained
an appreciation of why subsampling is consistent, we areinaavposition to modify the regular
kernel-based estimator to inherit that propé&rtur hope is to deliver a consistent estimator which

is reasonably efficient even in small samples.

Bltis interesting here to note the results in Miller (200#8ttshows that the most ‘robust’ quadratic estimator is not

a kernel estimator.
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Kernel-Based Estimators of Integrated Variance

Forh > 1 we define

Zh= Y2+ 2% (Yhor+ -+ Y1), and Zn = Y2 g+ 2Ymohi1(Ymohiz + o0 o Vi),

then it can be shown that
k—1 k-1
=y (k—Dz+ Yy (k- D3z,
i=1 j=1

(see the proof of Lemma A.5) such that

k—1
RV = (1-"5E)jo+ ) 27y
h=
k—
= (11— "kED0 4> KNP, — zh — Zn) = Wy T
h=1
where we use the vector of modified autocovariances estimato

XIH

l—‘H

Y= G0 2V15 -+ 2V m-1) s 27h =294 —2Zn— 2, forh> 1

Thus inspired by the subsample estimator, we consideodified class of kernel estimators
given by{W'4 : W € R™}. This class of estimators contains at least one consistémater of IV,
and as the following lemma shows, this class of estimatoctosely related to subsample-based
estimators.

Lemma 7. Suppose thalv = (o, ..., wm_1) and(aq, ..., ay) are such that

m
Wy = Zk;khak, forallh =0,...,m—1,
k=h+1

or equivantly, that
A = k[u~)k+1—2u~)k+u~)k,1], foralh=0,...,m—1,
with the conventioniy, = wmy1 = 0, thenW'qy = > ' axRV, .

Independently and concurrently of our results, Zhang (20G& analyzed subsample-based
estimators of the typ®_,"; xRV, subject to certain constraints ef, i = 1,..., m.

Zhang find the optimak; s to be
«_ ik ) fork = 3,4
o) = M (M2 ), =35,4...
whereM = O(mY?), for exampleM = 5m*?. Asm — oo this translated into
Wiy =20 —3u?+1,  for[uM] =2
Theorem 8 gives the properties of the underlying

14
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Theorem 8. Given(N), (V) and(T"), it holds that

E@) = (IV 4+ 2me?, —2(m + Do® — 21V, —2IV, ..., —2|V)
and

cov(d) = cov(d) + Aw’ + 2Bo?IV + LCIVZ,

where the upper left &« q sub-matrices of\, B, and C are given by

0 20 8 0 .. 0 -8 0 0
20 48 -28 8 - ~82 1620 —8(3) 0
Aq= 8 —28 40 —28 . |, Bg= 0 —-8(3) 163 -84 . |
0 8 —28 40 . 0 0 —84) 16(4)
0 -4 -4 -4
4 85 -8 -8
Cq=| -4 -8 815 -8
4 -8 -8 825

Next we seek the optimal unbiased estimator in this modifiasiscof kernel-based estimators.

We define they x g + 1 matrix

1 ml g g
3 0 0 1 0
Dy =

0 0 0 1

Now we solve the constrained optimization problem,mi'ﬁ)qiﬁbav subject tov; = 1, using the
same technique as in Theorem 3. Thus we deterwijne —M gle »1, whereM,, and M are

submatrices 0D, %{D;, and define the kernei; = (1, -2, V3.

FIGURE 2 ABOUT HERE
Elements ofv} plotted against/./m (x-axis: [0, 5])
m =78, 390 1560 and 1 = 0.01, 0.001
Truncation:q = 4/m
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For our comparison we use the following scaled estimators

RMy,: The regular kernel estimator
Iiv\("’q = %R\K’Vq =GRV,

RWy:: The modified kernel estimator

RV = (M2 4 20V, 2vo0) 'RV = GR Vot

RVeup: The ZMA subsample estimator

S5\ k
RVsup = mR\éuq = CsRVeun,

FIGURE 3 ABOUT HERE

/

Fori = 0.0001 make a scatter plot af?w?' Syw}, c2W S andciW, 5 Wsup.

againstm = 26, 2% ..., 217 in log-log scale

In our simulation stydy we assume that the observed log iceess is given byy/n =
Pin + Uyn, fort = 0,..., N = 23400 We simulated the true price process,y, as being a
random walk, defined on the unit intervg,, = >"¢_, &s, Whereg; ~ iid N(0, 02/N) wheres? is
a possibly stochastic volatility process, for now we asstiméo? = 1. Note that vaip; — pg) =
ZSNZO % — % = 1, itis also clear that the integrated variance is given by tthisiber asN — co.
We simulate the following noise process;y ~ iid N(0, »?). Note, that we in this setup will have

that) = w?, and thatE (7,) ~ 1+ m2w?, wherem.is the number of returns used to compyite

FIGURE 7 ABOUT HERE
Forix =1,0.1,0.01, 0.001 MSE signature plot oR\(N;andR\(;\,;

against sampling frequencies ranging from 1 second to 3&hsks in log-log scale

In figure 7 we present MSE signature plots for f,:andRVs:, based on 2500 repetitions. It
is evident that the MSE of the regular kernel estimator Eeélto the lower bound represented by

the punctuated line. In contrast the modified kernel estimieps tending to zero.
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5.1. Maximum Likelihood Estimator of Integrated Variance

We now compare the rate of convergence of the modified kestiehator to the rate that is achieved
by a maximum likelihood estimator ¢¥. So we consider a simple framework where the noise is

assumed to be iid and Gaussian distributed u.exv N(0, w?). Given(T’) it now follows that

(Yi 9 e eey ym), ~ Nm (Ov z:|V,w2) ’

where them x m covariance matrix, is given by

L0 0 - 202 —w? 0

] 0 % 0 —0? 202 —?
Y2 = +

0 = 0 —0? 202

Let 62, andéZ, denote the maximum likelihood estimatorslof andw?, respectively. The

asymptotic properties off,lL and c?)f,lL are given from classical results about the MA(1) process.
By adopting the expression given in Ait-Sahalia et al. @@oposition 1) to our notation, we have

that asymptotic covariance matrix foi2, , @z, ) is given by

V2 [ 2m+4my4rm+1 —(2mi + 1+ Vami +1)
m? . L 2mi + 1) (2m + 1+ Ami + 1)

So forx > 0 we have

1/442
m~“o 8/r O
avar ML) = v

mY2én, 0 22
where avaf-) denotes the asymptotic covariance matrix. This shows Heattaximum likelihood
estimator oflV converges at the same rate'/#, as the modified kernel estimator, which indeed
has been show to be the optimal rate of convergence in thiexipisee Stein (1987) and Gloter &
Jacod (2004, 2001b). Furtheti)f,,L converges at the faster rate'/2, and since the limit distribution
is Gaussian, see e.g. Ait-Sahalia et al. (2003), we notehkawo estimators are asymptotically

independent.

"SettinglV = 0 takes the root of the underlying MA(1) process-t. So for the interesting case with' > 0, the
local-to-zero oV /m leads to a local-te-1 root, as analyzed by Anderson & Takemura (1986), Tanakat8hgt (1989),
and Shephard (1993). Howevdy, /m is sufficiently “non-local” to zero that it does not affecetlimiting (Gaussian)

distribution of the maximum likelihood estimators.

17
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The special case where there is no market microstructuseiai= 0) results in faster rates of

convergence. Specifically we find that,

mY262, ,[ 6 -2

avar ) =1V ,

Mm%/ &4, -2 1
and it is interesting to note that avar/26 %, ) = 6IV2. So the asymptotic variance &f,, is in this
case three times that of the realized variance, which isghstained A = 0) maximum likelihood
estimator. Thus the loss in estimating the nuisance pasamétwhen it is truly zero, is identical
to that of R, = 74 + 27, which also has vaRV(") = 6IV22 + o(2) whene? = 0, see Zhou
(1996).

6. Practical Implementation

In practicea is not known, however it is straightforward to estimate Combining results of The-
orem 2 concernin@RV = y, and our results foR\y, = W'4 shows that
.2 RV=-RW p ,
w=—-— — w,
2m
sinceE(RV) = IV + 20°m, var(RV) = O(m) and R\ B Iv. Given the consistency R\ it
follows that

RV-RW _ 7o—W75 p
= —

s = —L 5
2mR\§ 2m - W'~y

This leads to a two-step estimator of integrated variance.

1. Given some initial value fax (A° say), we construal/,, and estimate

Po—Wid
2m- Wy )

2. Giveni we determine”v;, and define our two-step estimatorlfto be:

Naturally this procedure could be iterated, increasingptieeision of our estimate of.
To assess the MSE loss of this procedure, we continued théation study outlined above. As

the initial value for» we user® = 7,/(2m), wherem is the number of returns used to compgite
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FIGURE 5 ABOUT HERE
Fora = 0.1, 0.01, 0.001, 0.0001
Regular Kernel RV: MSE at true values df relative to MSE at two-step and oo-step.
against sampling frequencies ranging from 1 second to 38ihsis

horisontal axis in log scale

FIGURE 6 ABOUT HERE
For. = 0.1, 0.01, 0.001, 0.0001
Modified Kernel RV: MSE at true values df relative to MSE at two-step and oo-step.

against sampling frequencies ranging from 1 second to 3thsis

horisontal axis in log scale

In Figure 5 and 6 we present signature plots of the MSB‘Q;fiand RV .at true values of
(presented in Figure 5) relative to MSE at two-step and ep-sstimates of. The figures show
that the loss of having to estimateis minimal for empirically relevant values of (that is for

A < 0.001). We also note that the regular kernel is less sensiitieet estimation problem.

7. Conclusion

We have provided a systematic analysis of regular kernstdbastimators under the assumption
that market microstructure noise is independent of theieffigrices and independent of itself (at
different points in time). While this assumption is readaleawhen prices are not sampled too
frequently, such as every 15 ticks or so, there is overwhgraividence that market microstructure
noise has a more sophisticated dependence structure whefirggoccurs at ultra-high frequencies,

such as every tick. We are therefore, in separate papeendirg our analysis of kernel-based

estimators to the situation with more general assumptibostahe noise process.

We have showed that regular kernel-based estimators caritbeagcurate estimators of quadratic
variation, however they are always inconsistent. Takisgiiation from the consistent subsampling
estimator, a new modified kernel estimator is suggestedhwisiconsistent and has good finite
sample properties. We expect that these kernel-basedagstanwill be particularly useful in a
multivariate context, which we persue in future research.

Concurrently and independently of the present paper, Z(20@p) has improved the subsample

estimator. While the subsample estimator by Zhang et aD4R@ a linear combination of two
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types of subsamples, the estimator by Zhang (2005) is arlic@abinations of multiple types of
subsamples, and this improves the rate of convergence tptivaal rate m*/4. It follows directly
that there is a one-to-one mapping between the class of mddiérnel estimators and all linear

combinations of subsample estimators.

A. Proof of Theorem 2 and Intermediate Results

Proof of Lemma 1. First we note that;spj_1m =t and by(T) we have that

[(s—)m].m

Sup |(trsmi.m — trsm—1m) — (7(S) — (s — 2))| = o(m™),

se[0,1]
such that
Usmim—{smi—1m s frsmm—{rsm-1m f(s)*f(sf%)
sup |magiman —de) < sup |tmagy
_r(e_ L
+ sup |7'(s) — 2B = o(1) + o(D), (A1)
s€[0,1]

where the last term is(1) sincet’ is bounded. (A.1) clearly implies the result stated in thenh@a,

(the two are equivalent given the continuity0{s)).

Lemma A.1. We define %, = VY Vi+h. Given(N) and (V) we have that

Part | E(Xin) var(Xi n) COV(Xi.h, Xi+1,h)
h=0 aiz + 20? 2k 4+ 2)w* + Sa)zoiz + 207 (k — Do?
h=1 — 2 (K + 20 + 202 (0% + 02, + 0?02, w*
h>2 0 4o* + 202(0? + 02,,) + oPo w?

while cov(X; n, Xi+kn) =0, k> 2forallh=0,1,....

Part Il COV(Xi h, Xih+1) COV(Xi h» Xi—1,h+1) COV(Xi h, Xi—1,h+2)
h=0 —(k + Dw* — 2w20i2 —(k + Dw* — szaiz 20"
h>1 —20* — w?0? —20* — w?of,, o,

while all other covariance terms are zero.
Proof. (Partl) The expected values are given from
E(in) = EYiYish) = EQY + Ui — Ui—) (¥ + Uith — Uigno1),

which shows thaE (i o) = E(y*?) + E(uj)?+ E(u? ;) = 02+ 202, sincey?, u;, andu;_; are pair-
wise uncorrelated. Similarly we find th&(x; 1) = E[(u;)(—Uj)] + 0 = —w? and thatE(x;,) = 0
forh > 2.
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Next, we turn to the variance and covariance terms, where wakenuse of the identities,
var(e) = E(e?) = 2w? and
Ee) = E[uf +u? | +6uu? ;| —4uiu® | — 40y 4] = (2 + 6w’
Forh = 0 we have

E(xCy) = E(Y)) = E(yf+&)* = E(Y) + E(6') + 6E(y?€") = 307 + (2 + 6)w” + 60 7207,

and
E(io%iio) = EOYVAD) =BG + @)%y +e40)?
= E[ + 6 +2y7@) (V7 + €41 + 2Y1840)]
= E[2 + )T + )] = EL07 + 0 + Ul )02 + U2y + uD)]
= O'i20'i2+l + (o2 + oi2+1)2w2 + (k + o, (A.2)
E(XioXitho) = EY2y) =o0f0l,+ (07 +02,)20° + 4w, forh > 2, (A.3)
such that
var(xio) = Ex%) —[E(X,0]*=[30] + (2 + 6)o* + 120%0°] — [0? + 20°]?

= 20% 4+ (2 + 20" + 8520?,

COV(Xi 0, Xiz10) = (k—Dw? and covxio,Xitho) =0 forh>2.
Forh = 1 we findE(x?,) = E(y?Y?,1) = E(Xi 0Xi+1,0) Which is derived in (A.2),

E(XiiXite1) = E + U — Ui—) (Y + Uiss — UD2 (Y, + Uiz — Uigr)

= E[(Uj)(—2Ui11U) (—Ui;1)] = 2E[UjUj 11U Ui11] = 20",

andE (X 1Xi121) = w*. SinceE(x; 1) E(Xj.1) = (—o?)(—w?) = o*foralli, j = 1,..., m, we find

that

varxi 1) = o202+ (07 4+ 0?1207 + (k + o' — (0?)?

= aizai2+l + (aiz + oi2+l)2wz + (k + 2)a)4,

and covx; 1, Xi+1.1) = o*and covx; 1, Xiyn1) =0, forh > 2.
Forh > 2 we haveE(xfh) = E(yizyi2+h) = E(X.0Xi+h,0) Which is derived in (A.3), such that

var(xn) = o?0?,, + 202 + o, )w® + 4w*. Next, we have that

E(XinXi+1,n) = E(6€1h& 116 114h) = w®,
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while E(Xi,hxi+k,h) =0fork > 2. So CO\(Xi,h, Xi:l:l,h) = w* and CO\(Xi,h, Xi:l:k,h) =0fork > 2.

(Part Il) We consider

Eiox) = EOMYiYi+D) = E[ + )3V + @]
= E[(y?+2y'e + &)y +&)(—u)]
= E[(y*+2y7e + )y + Ui — Ui_1)(—u))]
= —ofo? — 207w’ + E[f (Ui — Ui_1)(~u)]

= —02w® —202w* + E[(U? + U? | — 2U;_1U;) (Ui — Uj_1)(—U;)]

= —0?w® — 2020 — ko — 0* — 20" = —307%w? — (kK + o?,
such that cow; o, Xi.1) = —302w? —6w* — (02 +20?) (—w?) = —202w? — (k + 1) w*, and similarly

E(XioXi—11) = E(Y2Yi_1Y) = E[(¥/? +2y'e + ) (Y + Ui — Ui_1)(Ui_1)]

= —o?w? - 202w® + E[€2(Uj — Ui_1)(Ui_1)]

= —ow? — 202w® + E[(U? + U7 | — 2u; _1U) (Ui — Uj_1)(Uj_1)]

—02w? — 20%w® — w* — kot — 20% = —302w® — (K + 3)0?,
which shows that caw; o, Xi_1.1) = —202w? — (k + D)w*. Fork > 1 we have

EXioXitk1) = E[(yi>k2 +2y'e + Qz)(yi*+k + Q+k)(yi*+k+1 + € 4kt1)]
= E[(yi*2 + 2y’ + QZ)(—UiZJrk)]

= - E[(yi*2 + ui2 + Uizfl)(uinrk)] = —Uiza)z — 2a)4,

and similarly fork < —2. Thus co\X; o, Xi+k1) = 0 fork > 1 andk < —2.

The only non-zero covariance betwegg andx; i 2, IS
COV(X; 0, Xi—1,2) = COV(€?, &_16141) = E(&fUi_1(—Uj)) = E(u?_,u?) = 20",

and forj > 3 we find that coyx; o, X1k j) = O for all k.

Forh > 1 we have

COV(Xin, Xint1) = EMYitnViViehir) = E[Y2Uisn(—Uin)] = — (02 + 207 w?,

COV(Xin, Xi—1h1) = EiYiehYiciYith) = E[—Ui_iui_1y3,] = — (02, + 20%)0?,

and similarly cowxi n, Xi—1n:+2) = E(66:1h8_161h+1) = E(—=Ui_1) (Uith) (Ui_1)(—Ui1p) = 0.
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LemmaA.2. (a) >} (a + 02y = 2f0 (S)GZ(S)dS, and (b) given(V) and ¢, = O(m'/?)
it holds that

M—0m

1
mZa o /Owg%(s)o“(s)ds:o(l).

m—

Proof. (a) Sinces? = El o2(s)ds, the first result follows from the identity"™," 0% = T o?(s)ds.
(b) We note thad ;™" 020.2+qm = [a4+02(o,+q —o?)] and similarly thay """ o "|2+qm —
Zm an [a|-|-qm |+qm (U|+q |2)] such that

M—Qm 1 M—Qm m am

Z Gi2sm0i2+Qm,m = E Z (afl,m + OVi4<|>(.‘,|m,m) Z (a|+qm m Em)2 (A4)

i=1 i=1

First we consider the first term on the right hand side. d.gt= ti m — ti_1,m and note tha; ,, =
O(m™) given (T). So for arbitrary pair§s m,Sm), i = 1,...,m of points, wheres m, § m, €
[ti—1.m. ti,m] we have that

M—0m M—0m
m Y lo*sm —o*GEmlsly = M2 )" jot(sm) —o*Emlsl,m¥?
i=1 i=1

m
< m Y2y jot(sm) — 0 (Em)| = o(D),
i=1
where the equality holds fan sufficiently large givern(V).
Next, we lets , and§ n, be the points int{_; m, ti m] that are such that?(s m)8i.m = t' m 2(s)ds
ando*(§.m)dim = t.tl_Tm 7'(s)o*(s)ds, and we note that these points exist given the contlnwty of

o2 andz’. In now follows that

M—0m M—0m tim 2 M—Qm
m Z Uﬁm = m Z ([ o (S)ds> =m Z o (S m)8| m»
=1 i=1 i—1,m i=1
M—0m

- A0 4 (8, m)im + 0(D)
i=1

M—0m M—Qm 1
= Y YEo GEmm+ Y [ — T'(§ )] (E.m)8im + 0(D)
i=1 i=1
1—9m

_ / " (s)o*(s)ds+ o(1),
0

where we used that

M—0m

Z [T(S) 1;:-: - 7§, m)]a (8m)dim =< sup
s

7(5)—1(s

m
1 ~ 3
/m = _T/(S,m)| E o*(Em)8im
i—1

1
= 0(1)/ o*(s)ds = o(1).
0
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By similar arguments we find that > """ o' . | = fan o*()ds+ 0(1), such that the first term
on the right hand side of (A.4) can be expresse§ 35" " (o} + o, ) = fol Yan (9)o*(s)ds +
o(l).

Now consider the second term on the right hand side of (A.4).

M—0m M—0m
2 2 2 2 2 2
M (@ m—0lgum’ = MY [6im0?(S.m) = Sisgnm0 (Sgnm)]
i=1 i=1
M—0m

= m*1/2 Z [m3/46i,m02(s,m) - m3/45i+qm,m02(s+qm,m)]2,
i=1
M—Qm
Crznm_l/2 Z [GZ(S,m) - 02(S+Qm,m)]27 (A.5)
i=1

IA

where

1

— Ji.m — di.m i —
Cm = supm®*§; m = m~Y*supgi < m~Y4[supt’(s) + supl§im — 7'(p) 1] = O(m™%).
| | S |

Now for m sufficiently large it holds that

A

[6%(S.m) — 0%(Stgnm]® < 16%(S.m) — (S tqmm)]

A

2 2 2 2 2 2
lots) = Tl T oG =Tl T 0G0 ~ Tsiam

where we Writ(-b(zs) as short for?(s.m). So (A.5) can be written ag,, sums that each are of order
c2,0(1) given (V), which shows that (A.5) is(m~/2gy). So it now follows thatm Y ;" (a2 —
Ui2+qm,m)2 = 0(1) provided that,, = O(m/?). This completes the proof.

Proof of Theorem 2. The results of Lemma A.1 are used extensively. First we rate t

m m m m-1
var(g) = var()_ Xio) = Y _varXo) + »_ COV(Xi0, Xi-10) + Y _ COV(X;.0, Xi1,0)
i=1 i=1 i=2 i=1

- Z[(ZK + 2)0* + 802w? + 207 + 2(k — 1)(m — D)w*
i=1
= (4m-—2k —1))o*+8Ve®+2IQL +o(d).

This result is identical to that derived in Hansen & LundeQ@&0 Similarly,

m-1 m-1 m-2
var(p;) = ) var(i)+ Y Cov(Xi1, Xi-11) + Y COV(Xi.1, Xis1.1)
i=1 i=2 i=1

m—-1
= O [k + 0" + 2007 + 07, o® + 0?07 1] + 2(m — 2)0*
i=1

= (k+dHm— (k +6))* + 40)2|V(%) + %lQ(Fln) +0(3).
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Forh > 2 we find

m—h-1

m—h m—h
var(y,) = Zvar(xi,h) + Z COV(Xi h, Xi—1.n) + Z COV(Xi h, Xi+1.h)]
i=1 i=2 i=1
m—h
= Y [0’ + 202+ 02 )0’ +olol ]+ 2m—h - Do’
i=1

= (6m—6h — 2" +40?Vn, + 2IQn +0(2).

Next, we consider the covariance terms.

m m—1 m—1 m—1
COV(Pg. P1) = COMY_ X0, Y Xi1) = D COV(Xi0,Xi1) + ) COV(Xis1,0,Xi.1)
i=1 i=1 i=1 i=1

m-1 m—1
= Z[—Zaiza)z — (k + D] + Z[—20i2+1w2 — (k + Do
i=1 i=1

= —(&x+2)(m-1Dw* - %ZIV(%),

and similarly
m m—2 m—2
CoV(Vg, Vo) = COV(Z Xi.0, Z Xi2) = Z COV(Xi 41,0, Xi 2) = (2M — Hw?,
i=1 i=1 i=1
while cou(y, ) = 0 fork > 3.
Forh > 1 we find:
m-—h m—h-1 m—h-1 m-—h-1
COV(Ph, Pha) = COMD_Xin, D Xihy1) = D COVXin, Xint1) + Y COV(Xit1n, Xint1)
i=1 i=1 i=1 i=1
m-h-1 m—h—-1

= - Z (02 + 20%)0® — Z (Ui2+h+1 + 20%)w?
i=1

i=1

= —4m-h-2Do*— ZwZIV%,

m—-h m—h-2
COV(Vh, Vhio) = COV(Z Xi.hs Z Xihi2) = (M—h — 2)w?,
i—1 i—1

which coupy,, Ypk) = 0 fork > 3.

Proof of Corollary 1. From Theorem 2 we have that

COV(2) 5, o+ 271) = (4— 16)(M — 2w” — 80’1V, = —12mw” + 240* — 8a)2|V%,

3N

such that

varnyo+2p1+ 7, = varye+27,) + %Var(zf/z) + %200\/()70 +271,27,)

= 8(M— Do’ + 8%V + 61Q2 + 0(2)
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+51(m - 2mo’ — §ot + Po’IV2 + §1Q2 1 + 0(3)
—12me* 4 240* — 8w2IV%

= [8+Z —12lmo* + (-8 — 12— 2+ 240"
+8°IV — %ZIV% +61Q1 + IQ%% +o(%)

= 2me® + 403V + 20%(v2 + 0?) + 7IQL + o(2).

The second result follows by defining= (1, 1, 1—70, 1%)’ and
W/A[4]W = %, W/B[4]W = g—f__i, W/C[4]W = 22—%8,

whereAp, By, andCyy, are the upper left 4 4 submatrices of\, B, andC, respectively, and the

calculations
[w*] —1(—32+ 28) — 25(8 — 32+ 24) — 33(8 — 32 + 243) — 2W Ciyw = Z,
[v,] (—16+ 16554 = —165; and (—165 + 16:3)3 = —16:%,

that quantifies the remaining terms.

Proof of Corollary 2. From Theorem 2 it follows thaE (W'4) = wo(IV + 2w?m) — w1 =220,
such that bia&v'4) = (wo — DIV + (wo — mT*lwl)Za)zm. The result for the variance follows by the
structure of the matrice&, B, andC.

Proof of Theorem 3.1t follows directly that
mVi(w) = W/(Am — 20w = My + W,ZM 2oWo + 2M 1oWo, (A.6)
using the constrainbg = 1, and the decomposition of the x m matrix

Mi1 My
M21 Mao

Am—2C =
By the first order condition of the right hand side of (A.6)lgew; = —M 2‘21M 21, and by substitu-
tion it follows that

MV (W*) = w*(Am — 2C)W* = My — M15M 53 Moy,

While a closed-form expression forVy(w*) is unavailable it is easy to establish that, (w*) — 4

asm — oo, numerically. The following table give® V4 (w*) for some values ofn.

m 10 50 100 200 500 1000 2000 5000
mVi(w*) | 4.8837 41732 40850 40418 40165 4008 40041 40016
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Proof of Lemma 4. The first result follows from the identity

_ m-1qg— m q—1.\2 m-1 m— 2q 2 q—2 q—1 m-19g-1
VvV, = 12m-t —q +—m (— )AT —87) + 8(3 4—q + o g
q q
+1 +2 4,m-19-1.2 8 (q—j)?
EmTqT UL -4t ) S - 2y
=3 =1

4= 1+2q+5m q2—6m?—6qm+2m3+g2m+m2q2+méq
m3q2

4
= —+= O( et tre Tt Te tm T e T e T

Similarly we have that

m

q
_ m=-19-1,2 , m-1,9-1)2 m-1y Ll el - et R
Vo = 8(TRE? 4 M (Ih216(1 - Bty + ) Tl O
j=2

8 —3+6m+6g+3m°q—3m?—3g%+g°m-7qm __ 04
3 = 0(3),

and

6—12m—12q—10m?q+6m?+6q°%+24qm—11mc?+4mPq3—mo* q?
= O(}7)

1
3 M2

B. Proofs of Section 4

Proof of Theorem 6. The first couple of subgrids are given by

g21 = {tO’ t2, K] tm—l}’ g22 = {tla t3a L) tm},
g31 = {to’ t3’ ey tm*Z}v g32 = {tlv t4v ey tmfl}, g33 — {th t57 e
g41 = {tO’ t4’ L] tm73}7 g42 — {tlv t57 ceey tmfz},

Sinceyy t,; = Yit1+ - + Vi, we find that

RVG, + RV, = (Vi+Y¥2?+ 4 Y-z + Ym-)* +

(yz+y3)2+---+(ym 1+ Ym)?

m—1

= ZZyI +22y|y|+l_r2— 2(V0+V1) —1I2

i=1 i=1

wherer, = y2 + y2. Similarly for g = 3 we have

YR, = (it+Yat+ ¥+t Ymat Yma+ Ym ) +
Y2+ Ys+ Y2+ + (Ymz+ Ym-2 + Ym-1)> +

27

) tm}’



Kernel-Based Estimators of Integrated Variance

(Y3 + Ya+Ys)2+ -+ (Ym-2 + Ym-1 + Ym)?

m m—1 m—2

= 3) VP HA4Y ViV +2) ViViez— I3
i=1 i=1 i=1

= 3oty +27,—T13,

where the remainder is given Iy = yf + yr% + (Y14 ¥2)? + (Ym1 + Ym)? =2+ (Y1 + Y2)? +
(Ym-1 + ym)z.

Similarly fork = 4 we find

4 m m—1 m-3 m—4
D RV, =4) YPH6Y ViV t+4) Vi%isa+2) Viiea—ra
j=1 i=1 i=1 i=1 i=1
whererg = r3 + (Y1 + Y2 + ¥3)? + (Ym—2 + Ym_1 + Ym)? @and in the general case we

k m m—1 m—k
ZRngj = k) VP H2Kk=D Y ViVir - +2) WiViak— Tk
=1 i—1 i—1 i—1

k

= kyo+ ZZ(k -y, —rk.
h=1

wherer =r_ 1 + (Y1 + - + Y1) + (Ym—ka2 + - - - + Ym)?. So it follows that
k k k
RV =k ') RV, = ilkpo+ )2k —hpel — & =po+2) Ky, -,
j=1 h=1 h=1
which completes the proof.
Lemma A.3. Define 3 = xj o+ 23/ 21 x;_i; for j = 1,...,m — 1. Then it holds thavar(zy) =
8w + 8w?0? + 20}, whereas

varz)) = 120° + 8% (@i - +0f) + ofdoi +-- +dofy + 207, forjz2

The covariances are given bgov(zj, zj ;1) = —60* —4w?(0%+- - -+ 0%) whilecow(zj, zjn) = 0
forlhj>2, j=12,....
(Under (T") wheres? = 02/m we havevar(zj) = 120* + 8jw?IV/m + 4(j — 3)IVZ/m? for

j > 2andcov(zj, zj;1) = —6w? — 4j@?IV/m forall j > 1).
Proof of Lemma A.3. From Lemma A.1 we have that

var(zy) = var(Xyp) = 8w* + 8w20i + 20‘11,
var(z;) = var(Xzo) + 4var(xy 1) + 4CoMXz 0, X1.1)

= [8w*+ 8w?c5 + 205 + 4[5w* + 2(62 4 05)w? + 0503]
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+4[—40* — 20%07]
= 120" + 80*(02 + 03) + 05(40? + 203),
var(zz) = var(Xso) + 4varnxz 1) + 4vanxy )
+4COMX3,0, X2,1) + 4COM(X3 0, X1,2) + BCOMX2,1, X1,2)
= [8w* 4 8w?03 + 205 + 4[5w* + 2(05 + 03)w? + 0503]
+4[4w* + 2(0] + 05)w® + 050 ]]
+4[—40* — 20°03] + 4[0] + 8[—2w* — w?0?]
= 120"+ 80%(0% + 05+ 05) + 05(40% + 405+ 209),
var(zg) = var(Xso) +4vanxs i) + 4varnxzz) + 4var(xy z)
+4COMX4,0, X3,1) + 4COMX4,0, X2,2) + 4COMX4,0, X1,3)
+8COMX3 1, X2,2) + 8COMUX3 1, X1,3) + BCOMX2 2, X1,3)
= [8w* + 8w?c] + 204] + 4[5w* + 2(05 + 0§ w? + 55073
+4[dw* + 2(05 + 0w + 0505] + A[4w* + 2(03 + 0F)w? + 0207]
+4[—40* — 20w?05] + 4[0] + 4[0]
+8[—2w* — w?c3] 4 8[0] + 8[— 20" — W’ 2]

= 120* 4+ 8w*(02 4 05+ 05+ 03) + 05(do] + 405 + dos + 207),
and the general result follows by the correlation structfng ;. Next, we note that

COM(Z1,2Z) = COV(X10, X2.0 + 2X1.1) = [20%] 4 2[-2(02 + 20%)0?] = —60” — 40’02,
COV(Zp,Z3) = COM(Xp,0+ 2X1,1, X3,0 + 2X2,1 + 2X1.2)
= [20% + 2[-2(02 + 20%)w?] + 2[20"] + 2[0] + 4[w*] + 4[— (02 + 20°)0?]
= —6w* — 4w? (0% + 03),

and the general result follows by induction. The higher oodariance are verified to be zero from

the correlation structure of ;.

Lemma A.4. Given the assumptions of Theorem 2, it holds that

CoV(Vg. 21) = 10w*+ 80?02 + 20}
COV(Po,22) = —4do*+4w?(03—0%) + 209
CoV(Vg, Z)) = 40?0 — o5 ) +20] forj =3
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and in general we have for+* 1 that

cov(y;,z-1) = 0,
cov(P;,z) = —2w*— 20’02, fori >2  coupy, z1) = —do* — 20?03
COMPi, Zip1) = 4o’ +40°0F + 20 (0?, — 03 + 20507,
COV(Pi, Zipo) = —2w*+ 2a)2[(cr§ — ai) — (O’% — G%)] + 20§0i2+2,
cov(Pi, Zi4j) = 20%[(0% —0%_)) — (0%, — 0] + 20507, for j > 3.

Proof. The structure follows from the correlation structurexpf.

Yo | X1,0| X200 X1,1 | X30 X212 X2 | Xg0 X31 X22 X13 | X50 X41 X32 X3 X14
X1,0 8 2 —4
X20| 2 8 4| 2 -4 2

X3.0 2 8 —4 2 -4 2

Xa,0 2 8 -4 2 -4 2
Xs5,0 2 8 4
X6.0 2

X7,0

The table above identify the non-zero correlations, whaeemultiple of thew*-term is given,
whereas the other two terms (involvingfo ? ando?0%) are given from Lemma A.1. Sincg, =

> X0 we find by the definition of;, that
COV(Pg,21) = [8w? + 8w?0? + 207] + [20"] = 10w* + 8w?02 + 254,
COV(Po, 22) = [20% + [Bw* + 8w?05 + 205] + [207]
+2[~40? — 200 3] + 2[—4w®* — 20?03
= —do* + dw?(05 — 03) + 2073,
COV(Pg, 23) = [20% + [Bw* + 8w?05 + 205] + [207]
+2[40* — 20°03] + 2[—do* — 20°03] + 2[2w?]

= 4w?(05— 05) + 2073,
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Y1 | X10| X20 Xu1|Xs0 Xo1 X12|X40 X31 Xo2 Xu3|Xs0 Xa1 X32 X23 Xia
X11|—4|—-4 5 1 -2
X2.1 -4 1 |-4 5 =2 1 -2 1
X3.1 -4 1 -4 5 =2 1 -2 1
Xa,1 -4 1 -4 5 =2
X5,1 -4 1
X6,1
Sincey; = >_ X1 it follows that
cov(P1,21) = —do — 2002,
COM(P1.22) = [—4o* - 20°07] +[-40* — 20°07]
+2[50* + 20?(02 4 03) + 0203] + 2[w?]
= 4o’ + 4w’0] + 20%03,
CoV(P1,25) = [—do’ — 20%05] + [-40” — 20°07]
+2[w*] + 2[6w* + 2(0'3 + 03) + 0503] + 2[w?]
+2[—20)4 — a)zoi] + 2[—2a)4 — a)zog]
= —20)4-1-20)2[(0%—0%) (03—02)]+20203,
CoV(Pq, Z14j) = 207 (0% — 02 ) — (62,1 — 0] + 20202,
Vo | X0 | X20 Xu1|Xs0 X21 Xi2 | X40 X31 X22 X13|Xs0 Xa1 X32 X23 X14
X1,2 2 =2 -2 4 1 -2
X2.2 2 -2 1 -2 4 =2 1 -2 1
X3,2 2 -2 1 -2 4 =2
X4.2 2 -2 1
Xs,2
Sincey, = > X it now follows that
CoV(7,,21) = O,
CoOV(Yy, Z) = [2604]4-2[—20)4—0)205 = —20* — 20° O'l,

COV()A/ 2 Z3) =

2w + 2[-20* — w?0 3] + 2[- 20" — w?o )]

+2[4w* + 202 (al + 03) + 0103] + 2[w?]

— 40)4+4a)2

2+ 20° (03 — 03+ 20103,

31




CoV(Y 5, Zo4j)

Kernel-Based Estimators of Integrated Variance

[20)4] + 2[—2a)4 — a)zoi] + 2[—2a)4 — a)zag] + 2[0)4]

+2[40* + 20°(05 4 02) + 0502] + 2[w?]

+2[—20* — &?
—20* 4+ 20°[(05 — 0%) —

+2w2[(c7]2 - 012_1) -

02 + 2[-20* — o?

(03

2
(@511~

ol
02)] + 20204,

2)] + 2020

Next we omit thex, o-columns as these correlations are all zero.

i+]

Vs [ X11| Xa1 Xi2|Xa1 Xo2 X13|X41 Xs2 X23 Xua | Xs1 X42 X33 Xo4 X5
X13 1 -2 2 4 1 -2
X2.3 1 -2 1 -2 4 =2 1 -2 1
X33 1 -2 1 2 4 -2
Xa3 1 -2 1
Xs,3
Sincey; = Y X 3 it now follows that
COV(Y3,21) = COV(y3,2Z2) =0,
COV(P3, 23) = 2[0*+ 2[-20* — 0?03] = —20* — 20?07,
COM(P3, 22) = 2[w*+ 2[-20* — 0?03 + 2[-2w* — 03]
+2[4w* + 202 (01 + 04) +o aﬁ] + 2[w?]
= do* 4 40?03 + 20°(05 — 03) + 203075,
COV(P3,25) = 2[w*] + 2[-20* — a)zog] + 2[—2w* — a)zag] + 2[w?]
2[4w* + 20% (o5 + ag) + agag] + 2[w?]
+2[-20" — w?03] + 2[—2w* — a)zag
= 20"+ 20%[(05 —02) — (05— 02)] + 20302,
COW(P3. Za+j) = +20%[(0F = 0§_y) — (05, — o D] + 20507,
Results fory;, i > 4 follows similarly.
Proof of Lemma A.5. First note thaE (y; + - - - + Vi_1) = 2w° + Zlk L o2, such that

Er) = Ek1) + ) (07 + 051 ) + 407,

k—1

i=1

E(r) =0,

which proves the first result. In the constant-volatilitsedhe expression simplifies to

Erp)=21+2+--

2
-+k—1)%+(k—1)4w2:k(k—l)%+(k—l)4w2.
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To establish the results for the variance and covariandgs,cibnvenient to defing; = xj o +
.- )
ZZLl Xj_iji for j = 1,2,...S021 = X0, Z2 = Xo0 + 2X11, Z3 = X3 + 2Xp1 + 2X12, €tc.
Similarly, we defin€z; = Xm0, Z2 = Xm-1.0 + 2Xm-2.1, €tc.

From calculations, such as

3y2 + 2(y2 + 2y1Y2) + (Y2 + 2YoY3 + 2y1Y3)

Y2+ (Y1 + Y2)% + (Y1 + Y2 + ¥3)?
= 3Xy0+ 2(X20 + 2X1,1) + (X3,0 + 2X2.1 + 2X1,2)

= 371+ 22, + z3,

it follows that

k—1 k—1
l l . l . ~
He=%Y (k=Dzj+ %Y (k= )z.
j=1 j=1
From Lemma A.3 it follows that
k—1 k—1 2 k—1
k=i, | _ k=] , k—j k=j—1 -
var| > Sz | = (T) var(zj) +2 ) S —cov (7). j4a)
j=1 j=1 j=1
k—1
_ k=i [k=i AL —
= ZT[Tvar(ZJ)+ 3 2COV(ZJ’ZJ+1)]
j=1
k—1
. k—j | k—j k—j—1 4 k=1 4
= ZT[T_ K ]12‘0 — A
j=1
k—1
k— k— k—j—1 2,2 2
+Y P - sl + o+ o
j=1
k—1
-
+ (TJ) o%(dof+ -+ 40t +20°).
j=1
Since
k
Yokl o ik
k k — 2 k>
j=1
k
kejl]  _ lk=lksl _ ek
Zkkm - 6 k m_o(m)’ and
j=1
k
k—jk=j i — 1K1 _ ok
Z k k m — 12 m? _O(mz)’
j=1

and(o2+---+0?) = O(%) and thav?(4o 3+ - - +402_, +202) = O(L;) under our assumptions,

we find that

k—1
Yok [k% - k*kal] 120 — K14t = (6— 4yt = 2k,
j=1
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k

-1
PR - atel e 4 oD = o). and

j=1
k—1
N\ 2

(k%) o2(dod+ -+ 402 +202) = O,

=

i—
which shows that vap_'"; 7)) = 252* + O(X). Finally, by adding the contributions from
the termzJ Lkoj —Z; that are derived in the same manner, and usingzhandz; are uncorrelated
fori, j < m/2, the result for va(rErk) follows.

Next, we consider the covariance betwagrandy,, fori = 0,1,... From Lemma A.4 it

follows that

@ k-1

CoV(Vo. i i) = S CO(V o, 21 + Z1) + X COV(Vo, 2+ 2)+0

= 20°(F0- P20 = 286 + ) = 20O ) = 120" ().
For the remaining elements @fthat involvey,, + 7 _, = 23" x; . we find similarly that
COV(P1 + g, trg B 2. 2[ K244 k24— k35] — gkl
whereas
covy + 7. drio L 4[24 pda— 2] 0, forhz2

This completes the proof.

B.1. The Bias of the Subsample Estimator

Lemma A.5. Given(N) and (V) it holds that

k—1
Ery) = Zh(aﬁ+azm+l_h)+4(k—1)w2,
h=1
var(irg = 4520t + 0(%),

coultr,q) £ of(122 gkl 0., 0).

Here we have use# to denote equality in terms of the®-terms, while other terms that involve
2 andoi are omitted as these a@m=) andO(m~2), respectively.

Lemma A.5 shows that

varRVeu) = VarRVy,, — o

RN 4521 — 2comtry, 7w
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—  do* + 40* — 2(120* — 8w =0 ask, m — oo,

confirming thatR\gy, is consistent whereas the Bartlett type estimator is insteTd.

Another result that follows from Lemma A.5 is that the biasdt,y, is given by

biagRVeup) = (1— DK 1)V 4 (1 — M=k mLkedyoe?m — LE(ry)
k—1
= -0 rrlm(zl IV — Z h(aﬁ + G§n+1fh)v (A.7)
h=1

which can be verified to be of ordé:v(er ) Thus bia$RVsy,) = o(1) if k/m = o(1) ask, m —
Q.
With Theorem 8 in place it is now simple to determine the nunttbsubsamples that minimizes

the mean squared error (MSE).
Corollary A.6. Given the assumptions of Theorem 8, it holds that

biasRVaug,) = Wy E(F) = — 251y, (A.8)
such that mean squared error of RY is given by

MSE(RVau)/1V? = Wy, Wy + [THI1- %12,

whereE] = £ + Aga? + Bqa + Cq 2, 2} is the upper left gx q submatrix ofs;, andWsu, =
_ m—g+1l g-1 g-2 1
Q- 5 9

We observe that (A.8) is equivalent to (A.7) giver).

C. Proof of Results of Section 5

Proof of Theorem 8.

By the independence af andz we have foii, j > 1 that,

COV(Yq, 27i) = COM(Pq, 27i) —COM(Vo, Zi + Z)

1K

COV()A/Oa 2)A/|) - 2COV()>07 Zi)a

var(2y;) = var(2y;) +vanz + z) — 2coM2y;, z + %)

1K

var(2y;) + 2varnz) — 8covy;, z),

cov(2yi,2y;) = COV(2Y,27) +COV(Z + Z, Zj + Zj) — COV(2Y;, Zj + Zj) — COM(Z + Z, 2y §)

[

cov(27, 27 ) + 2coMz, Zj) — 4couP;, Zj) — 4coUz, 7)),
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whereZ refers to equality under the assumption that= aJ? for alli, j, in which case the contri-
butions fromz; andz are identical.

Thus, the elements #w* + Bw?s? + Co*2 are given as follows.

[0,1] = —2coMyq, z1) = —200* — 160%02/m — 4o*/m?,
[0,2] = —2covPg, 22) = +8w* 4+ 0 — 4o/ m?,
[0,i] = —2coMyq. z) = —4o*/m?, fori > 2,

[1,1] = 2vanz) — 8couy;, z1)
= 2[8w” + 8w?c?/m+ 20*/m? — 8[—4dw” — 2w?c?/m]
= 480" + 320w%c?/m+ 4ot/ 7,
and more generally fdr> 1 we have
[i,i +1] = 2covz,z41) —4COMY;, Zi41) — 4COUZ, Vi 4)
= 2[-6w* — diw’c?/m] — 4[4w* + 4w’c?/m + 204/ m?] — 4]0]
= —280" —8(i +2w?/m— 8*/m?,
[i,i +2] = 2covz, z,2) — 4COMP;, Zi12) — 4COMZ, V;,0)
= 2[0] — 4[—20w* + 20*/m?] — 4[0] = 8w®* — 80/ m?,
[i,i +]J]1 = 2covz,zyj)—4coUyi, ziyj) — 4COMZ, Viyj)
= 2[0] — 4[20%/m?] — 4[0] = —80*/m?, for j > 3.

Further, fori > 2 we find that

[i,i] = 2vanz)—8covy;,z)
= 2[120* + 80%iw’c?/m+ 4l — 3)o*/m?] — 8[— 20" — 20?c?/m]

= 400"+ 16(i + Do’c?/m+8(i — $)ot/m”

C.1. Ancillary Regressions

Our analytical (matrix) expressions for var<y) and varw'y) do not reveal their dependence ion
in closed form. However, this dependence can be determinextrically by ancillary regressions.
For the regular kernel estimator we found that(vgfy) — 40* asm — oo, and the rate at

which the variance converges to the lower bound can be digtednfrom the ancillary regression
logW'SAW! — 412) = a + Blogm + e, for m = Mmin, - - -, Mmax.
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Similarly for the modified kernel estimator and the subsangpéstimator where Idgi/j’iﬁ\ivi) and
Iog(v”v’sub]* ifv”vsuth*) are the relevant dependent variables. For the Igttee g*(A, m) denotes the

number of subsamples that minimized the variance.

1. LetYn, = log(w¥ Zaw:—4A2), log(W =W) (using truncation ¢/m) or log(W,q, 2 Wsuty)

(using optimalq).

Form = 1C®, 10%, 10°, 10°, run the regressions:
Ym = am + Bmlogm; + e, for mj = m, sm, m, 2m, 4m,
which yields(am, B,).

2. By imposings = —1/2 (or 8 = —1/3) reestimatex, by

L1
Om = g;(Ymi —ﬂlogmi),

TABLE 1 ABOUT HERE
Ancillary Regression Results:

One Panels for each &\{,: R\ R\/Subﬁ.

Table 1 shows than*(W:'4 — IV) has an asymptotic variance that equals(@xpIV? under
(T’). The results in the table is consistent with Zhang et al. (208% show that the subsampling

estimator converges at the slower rat&®, which corresponds tg., = —1/3
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Table 1: Ancillary Regression Results.

Panel A: Regular Kernel

% =01
m am l%m &;ﬁSt
10® 1276 -0515 1.175
10* 1.237 -0.509 1.166
10° 1215 -0.506 1.161
16 1200 -0.504 1.157
Panel B: Modified Kernel
% =01
m &m Bm arest
106 0.998 -0.495 1.031
10 1.005 -0.496 1.037
10° 1.016 -0.497 1.039
106 1.022 -0.498 1.040

Panel C: Subsample Estimator

A =01
m &m Bm arest
10® 0.366 -0.371 0.105
104 0.297 -0.361 0.073
10° 0.242 -0.354 0.052
108

am

0.244
0.112
0.028
-0.026

0.141
0.033
-0.034
-0.077

-0.101
-0.398
-0.621

A =001
o
-0.551  -0.108
-0.532  -0.143
-0.521  -0.162
-0.514  -0.173
A =001
,3 &rest
m m
-0.541 -0.142
-0.525  -0.170
-0.516  -0.185
-0.511  -0.194
A =001
,3 &rest
m m
-0.481 -1.124
-0.438  -1.243
-0.409 -1.318

A =0.001
am  bm o aR”
0.217  -0.679 -1.019
-0.242 -0.612 -1.146
-0.541  -0573 -1.212
-0.733  -0.550 4.25
A =0.001
am  bm o aR”
0.185 -0.675 -1.027
-0.265 -0.610 -1.151
-0.558 -0.571 4.21
-0.747  -0.549 4.25
A =0.001
am  bm o aR”
0.146  -0.6582.099
-0.455  -0.5712.371
-0.939  -0.5082.544

The Table presents results from the local ancillary regoasshat reveal the estimators rates of convergence.
The local regressions are each based on five data points, m/4, m/2, m, 2m, and 4m, where m is listed

in the first columné&m andp,, are the unrestricted estimates a?dﬁftis the estimate ok, wheng,, is fixed
at—1/2 (Panels A and B) or1/3 (Panel C).
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D. Figures
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Figure 1: Plot ofw*, the optimal weight. The number of observatiomsequals 78 in the top plot, 390 in the
middle ,and in the bottom plah equals 15601 = w?/02 is set to be M1 and 0001 in each subplot.
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Figure 2: Plot ofw?, the optimal modified weight. The number of observationsequals 78 in the top plot,

390 in the middle ,and in the bottom plot equals 15601 = w?/0? is set to be M1 and 0001 in each
subplot.

42



Kernel-Based Estimators of Integrated Variance

= Regular Modified — Subsample
1 -
0.5
=
o
1
[as]
8 o0a
1S
]
L 0.04
[ e
.©
<
>
0.01
T T T T T T T T T T T 1
> N re] i g S p=H =2} o o~ Lo S
— N Lo = < == by © o N L0 Py
— N ™ © 4
Number of observations
= Regular Modified —— Subsample
1 9
0.5
=
S
S 0.1
o
1
[as]
=]
o
E o.01
[5)
o
[ e
.©
g 0.001
T T T T T T T T T T T 1
o) © N 3 « <« o 2 S 3 2 =
g 8 8 § g g 8 2 QIN B 3
— N <~ co — N ™ © <9
Number of observations
; . ‘e */ I TA Sl R =/ % H _ o6 »4 17
Figure 3: This figure plotsv;' ¥, w}, Wi’ %, W a”dWsuq,* X, Wsuh, againsm = 2°, 2%, ..., 277, in log-log

scale. In the top plot we have= 0.1, and in the botton plot we selectéd= 0.0001. The gray line in the
bottom plot represent the realized variance.

43



144

=1

MSE - lambda

0.01

MSE - lambhda

~— Regular Kernel Modified Kernel ~— Regular Kernel Modified Kernel
6.2910 0.3981 ®
/./.
3.9750 0.2889 | e /
2.5120 0.2096 o .
. . / ./
1.5870 ® < 0.1521 o—" -~
. ./ o /0/ /-/
1.0030 - w 0.1104 R B
v 2 e -
0.6336 _— £ 0.0801 o—2 —
" < f— -
- _—
0.4003 i 0.0581 "
o« L .
o %) Ve
0.2530 / 00422
—* et
0.1598 " 0.0306 | e
H .
e /
0.1010 — 0.0222 ] /-
0.0638 — 0.0161
- '\I’ T T T T T ’l ’_I‘ '\I) T T T T ._I. ._I. T 1 _ '\I) T T T T T ’_I‘ ’l '\I) T T T T ’_I‘ ’_I‘ T 1
= T 2 4f a3’ Rg g 8 £33 88 g8 88 B T 2 4f 3’3 8a g 8 &£8 88 g B8
R ] ® o D ® D 5 &, = ~ o W NS = e = r = ® © D [ B~ B - = ey ~ o W N B s =
8 g8 8 8 88 gg 3 & 28 88 8 &2 8 g8 88 88 gg 3 &8 58 88 8 582
Sampling frequency in Seconds(m) Sampling frequency in Seconds(m)
~— Regular Kernel Modified Kernel ~— Regular Kernel Modified Kernel
0.1366 /t 0.0924 e
0.0993 :/ 0.0625 /
./ ®
0.0722 ‘/' 0.0423 ./
A
0.0525 Z 8 0.0286 /'
3 >
0.0381 '/ T 0.0193 ¢
. = 1} . =
‘/ _g ./
0.0277 = £ 0.0131 ./
83
:/ s /./
0.0201 ., 0.0089
43/ L /"
0.0146 /3 2 0.0060 /.—"
=3
0.0106 | = 0.0041 e
=" Pl
0.0077 /: 0.0027 /.
0.0056 4 0.0019
- '\I’ T T T T T ’l ’_I‘ '\I) T T T T ._I. ._I. T 1 _ '\I) T T T T T ’_I‘ ’l '\I) T T T T ’_I‘ ’_I‘ T 1
= T 2 4% a3’ Rg g 8 £33 88 g8 88 = T 2 4f 3’3 R8a g 8 &£8 88 g B8
R ] ® o D ® D 5 &, = ~ g W NS === ® 2 ® © D ® 2 5 ;G = ~ ol W N B = s
8 g8 8 8 88 gg 3 & 28 88 8582 8 g 88 88 gg 3 &8 58 88 8 82

Sampling frequency in Seconds(m)

Sampling frequency in Seconds(m)

Figure 4: MSE of regular and modified kernel estimate of RV values of..
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Figure 5: Regular Kernel RV: MSE at true values\afelative to MSE at two-step and oo-step.
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Figure 6: Modified Kernel RV: MSE at true valuesofelative to MSE at two-step and oo-step.
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