
Regular and Modified Kernel-Based Estimators of Integrated

Variance: The Case with Independent Noise∗

OLE E. BARNDORFF-NIELSEN

Department of Mathematical Sciences, University of Aarhus

PETER REINHARD HANSENy
Department of Economics, Stanford University

ASGERLUNDE

Department of Marketing, Informatics and Statistics, Aarhus School of Business

NEIL SHEPHARD

Nuffield College, University of Oxford

This Draft: March 28, 2005

Abstract

We consider kernel-based estimators of integrated variances in the presence of independent

market microstructure effects. We derive the bias and variance properties for all regular kernel-

based estimators and derive a lower bound for their asymptotic variance. Further we show that

the subsample-based estimator is closely related to a Bartlett-type kernel estimator. The small

difference between the two estimators due to end effects, turns out to be key for the consistency

of the subsampling estimator. This observation leads us to amodified class of kernel-based es-
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1. Introduction

In the last five years substantial improvements in our understanding of and ability to forecast finan-

cial volatility has been possible through the harnessing ofhigh frequency financial return data. The

key developments have been the use of estimators of quadratic variation, (e.g. Andersen, Bollerslev,

Diebold & Labys (2003) and Barndorff-Nielsen & Shephard (2002)) and making sense of their prop-

erties when applied to 5 to 30 minute return data. A weakness with existing methods is their inability

to deal with market microstructure effects whose effects are key when we use returns recorded over

very short time intervals. Interesting recent innovationsthat improve our comprehension of this

topic include Aı̈t-Sahalia, Mykland & Zhang (2003), Bandi &Russell (2004), Hansen & Lunde

(2006, 2004b), and Zhang, Mykland & Aı̈t-Sahalia (2004).

The problem of estimating the quadratic variation is, in some ways, similar to the estimation of

the long-run variance in stationary time-series. So it is not surprising that the literature has studied

estimation methods that are well-known from the literatureon covariance estimation, including pre-

whitening methods, likelihood-based estimators, and kernel estimators. For example, the popular

realized variance(RV) is analogous to the sum-of-squares variance estimator. Because theRV is

sensitive to market microstructure noise it is recommendedto use sparse sampling in practice, and

the optimal sampling frequency is derived in Bandi & Russell(2004) and Zhang et al. (2004). The

moving average filter used by Andersen, Bollerslev, Diebold& Ebens (2001) and the autoregressive

filter used by Bollen & Inder (2002), are estimators that use pre-whitening techniques, and Bandi

& Russell (2004) analyze optimal sampling of pre-whiten series. Likelihood-like estimators include

the maximum likelihood estimators of Aı̈t-Sahalia et al. (2003) who use a homogeneous diffusion

model framework and the GMM estimator of Oomen (2004b) who use a pure jump model. The

subsample estimator of Zhang et al. (2004) stands out as the only existing nonparametric estimator

that is consistent, and its analog for estimation of the long-run variance was introduced by Carlstein

(1986).

Our focus will be on kernel-based estimators. This literature was started by Zhou (1996) who

proposed a particular kernel estimator, which only incorporates the first-order autocovariance. This

suffices for unbiasness under “independence noise” where the population value of higher-order au-

tocovariances are zero. Hansen & Lunde (2006, 2004b) primarily use kernel-based estimators to

characterize properties of market microstructure noise. Hansen & Lunde (2006) use the estimator

of Zhou (1996) to construct a test for “independent noise” and provide empirical evidence of time-

dependence in the noise when return data are sampled at ultrahigh frequencies, such as every few
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ticks. Hansen & Lunde (2004b) analyze the properties of realized variance under generalassump-

tions about the noise and derive a particular unbiased kernel estimator, that can be used to uncover

the time-dependence in the noise. Thus, the existing literature on kernel estimators has either fo-

cused on that based on the first-order autocovariance, see Zhou (1996), or used particular unbiased

kernels to analyze and characterize features of market microstructure noise, see Hansen & Lunde

(2006, 2004b).

In this paper we provide the first systematic study of kernel-based estimators of the integrated

variance in the presence of market microstructure noise. Wederive the optimal kernel-based esti-

mator under an assumption that the noise is without memory and independent of the efficient price,

an assumption which is empirically reasonable at moderate time scales such as 1-minute returns in

highly liquid markets. Even though second and higher-orderautocovariance are known to be zero

under this assumption, we show that it pays off to estimate these. This makes it possible to derive

kernel-based estimators that are far more precise than is that of Zhou (1996). However, we also

show that there does not exist a consistent regular kernel-based estimator, so there is a limit to the

precision of regular kernel-based estimators. Interestingly, we show that the consistent subsampling

estimator of integrated variance by Zhang et al. (2004) is closely related to a particular kernel-based

estimator. Importantly, it turns out that the difference between regular kernel estimators and the

subsampling estimator, generated byend effects, is crucial for the consistency of the subsampling

estimator. This observation allows us to propose a modified kernel-based estimator which is consis-

tent. We study the efficiency of the new class of estimators and find its rate of convergence to be the

optimal rate,m1/4, wherem is the number of intraday returns, see Stein (1987) and Gloter & Jacod

(2001a, 2001b). So this rate is as good as the rate that can be obtained by a maximum likelihood

estimator under more restrictive distributional assumptions for the noise.

In Section 2 we detail our assumptions about the noise, efficient price process and sampling

scheme. In Section 3 we detail one of our main contributions,a systematic analysis of the properties

of regular kernels. In Section 4 we related subsampling estimators to Bartlett-style regular kernels,

and we see the difference is due to end conditions. In Section5 we introduce the new modified kernel

estimator and study its properties. In Section 6 we draw someconclusions. A lengthy Appendix

provides the proofs of the results given in the paper.
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2. Assumptions

2.1. Price Process and Noise

Without loss of generality we assume that the observed priceprocess is given by

p(t) = p∗(t)+ u(t), t ∈ [0, T ], (1)

where we labelp∗ as the efficient price process andu as the noise process. We assume that the

efficient price is given from the simple diffusion model,dp∗(t) = σ (t)dw(t), wherew(t) is a

standard Wiener process that is independent of{σ 2(t)}T
t=0, and we make the following assumptions

about the noise process.

(N) The noise processu has mean zero, varianceω2 ≡ E[u2(t)] < ∞, and kurtosisκ ≡ E[u4(t)]/ω4

< ∞. Moreover,u(s) ⊥⊥ p∗(t) for all s, t ∈ [0, T ] andu(s) ⊥⊥ u(t) for all s 6= t.

There is plenty of empirical evidence against(N) when prices are sampled at ultra-high fre-

quencies, such as every few ticks, see Hansen & Lunde (2006, 2004b) who show thatu is neither

time-independent nor independent ofp∗. On the other hand, Hansen & Lunde (2006) also note that

there is little evidence against (the implications of)(N) when prices are sampled at more moderate

frequencies such as every 15 ticks. Because the analysis become much more complicated ifu is

time-dependent, all our results are derive using(N). So our results may not apply to tick-by-tick

data. The advantage of our strategy is that it will produce a clear cut analysis of the core issues of

kernel-based estimators.

Equation (1) may be viewed as a (Beveridge-Nelson type) decomposition, wherep∗ and u

represent the persistent component and transitory component, respectively. So the volatility of

p(t + s) − p(t) is well approximated by that ofp∗(t + s) − p∗(t) when s is large. Thus, the

volatility of p∗ is the appropriate object of interest, even for the reader who is exclusively interested

in the volatility of p (whetherp is autocorrelated or not).

Without loss of generality we consider the unit interval of time, [0,1], that is divided intom

sub-intervalsti,m − ti−1,m, i = 1, . . . ,m, (t0,m = 0 andtm,m = 1). The innovations inp∗, p, andu

over each of the sub-intervals are defined by, fori = 1,2, . . . ,m,

y∗
i,m ≡ p∗(ti,m)− p∗(ti−1,m), yi,m ≡ p(ti,m)− p(ti−1,m), ei,m ≡ u(ti,m)− u(ti−1,m).

We will refer to y∗
i,m andyi,m as intraday returns, and we note thatyi,m = y∗

i,m + ei,m.
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We define the integrated variance

IV ≡
∫ 1

0
σ 2(s)ds,

which is the object we would like to estimate. Our assumptions about the efficient price implies that

IV =
∑m

i=1 σ
2
i,m, whereσ 2

i,m ≡ var(y∗
i,m),

1 i = 1, . . . ,m. In fact we have thaty∗
1,m, . . . , y∗

m,m are

independent and Gaussian distributed,y∗
i ∼ N(0, σ 2

i,m), (conditionally on{σ 2(s)}1
s=0). Throughout

we make the following assumptions about the volatility path.

(V) The volatility is (pathwise) continuous on [0,1], strictly positive, and satisfies

m−1/2
m∑

i=1

|σ r (si,m)− σ r (s̃i,m)| = o(1),

for somer > 0 (equivalently for allr > 0)2 wheresi,m and s̃i,m are arbitrary points in the

interval [ti−1,m, ti,m], i = 1, . . . ,m.

2.2. Sampling Scheme

We make the following assumption about the sampling times,t0,m, t1,m, . . . , tm,m, where we use⌈a⌉

to denote the smallest integer greater than or equal toa.

(T) It holds that sups∈[0,1] |t⌈sm⌉,m − τ (s)| = o(m−1), whereτ is continuous and differentiable

function,τ(0) = 0 andτ(1) = 1, and 0< τ ′(s) < ∞ for all s ∈ [0,1].

The special case where the price observations are equidistant in time, corresponds toti,m = i /m,

in which caseτ(s) = s and τ ′(s) = 1. Mykland & Zhang (2005) use a similar framework for

sampling times, see also Barndorff-Nielsen & Shephard (2005). Given(T) we have the following

result that corresponds to Assumption A.v in Mykland & Zhang (2005).

Lemma 1. Given(T) it holds that

lim
m→∞

sup
1≤i≤m

∣∣∣ ti,m−ti−1,m
1/m − τ ′( i

m)

∣∣∣ = 0.

Also key for our analysis is the (time-deformed) integratedquarticity,

IQ ≡
∫ 1

0
τ ′(s)σ 4(s)ds,

1All population moments are made conditional on the stochastic volatility process,{σ2(s)}1s=0, which defines our

object of interest. To simplify notation we use the convention E(·) ≡ E(·|{σ2(s)}1s=0) , and similar for var(·), and cov(·).
2See Barndorff-Nielsen & Shephard (2003).
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and it holds thatm
∑m

i=1 σ
4
i,m = IQ + o(1), whereσ 4

i,m ≡ (σ 2
i,m)

2, see Lemma A.2 in the appendix.

An interesting sampling scheme is that whereτ (s) is the solution to
∫ τ (s)

0 σ 2(r )dr = s· IV, such

that σ 2
i,m = IV

/
m for all i = 1, . . . ,m. We refer to this as Business Time Sampling (BTS), see

Oomen (2004a, 2004b). As noted by Hansen & Lunde (2006), BTS minimizeIQ ≡
∫ 1

0 τ
′(s)σ 4(s)ds =

IV2, as the implicit function theorem shows thatτ ′(s) = IV
/
σ 2(s) under BTS.

(T ′) Condition(T) holds withτ ′(s) = IV
/
σ 2(s).

3. Properties of Regular Kernel-Based Estimators

We consider the family ofRV-estimators{RVw : w ∈ Rm} given by

RVw ≡ w0γ̂ 0 + 2
m−1∑

h=1

whγ̂ h, whereγ̂ h ≡
m−h∑

i=1

yi yi+h for h = 0, . . . ,m − 1,

and we call this the class ofregular kernels. These types of statistics are familiar from the litera-

ture on covariance stationary processes, where they are used to estimate the long-run variances and

covariances. Leading examples of this include Newey & West (1987) and Andrews (1991). This

theory is not directly applicable here as our in-fill asymptotics is entirely different from the con-

ventional setup. Further, the market microstructure noisein our problem will induce a particular

autocovariance structure that we will use to characterize the kernels that provide good estimates of

the IV.

Examples of kernel-based estimators for estimation of integrated variance from high-frequency

data include those by Zhou (1996) (ωh = 0 for h ≥ 2), Hansen & Lunde (2004b) (ωh = (m+h)/m

for h ≤ ⌈ρm⌉ 0 ≤ ρ < 1), and Hansen & Lunde (2003, 2004a) (Bartlett kernel). Interestingly, we

will show in Section 4 that the subsample-based estimator ofZhang et al. (2004) is almost identical

to a Bartlett-type kernel estimator. However, the feature that makes the subsample estimator dis-

tinct from any kernel estimator turns out to be very informative about the estimation problem, and

suggests a modified class of kernel estimators. We will spellthis out in Section 5.

Since any kernel-basedRV is a linear combination of̂
 ≡ (γ̂ 0,2γ̂ 1, . . . ,2γ̂m−1)
′, we can study

the properties ofRVw from the properties of̂
.
For anym × m matrix A = {ai j }m

i, j =1 and any function,f, that is integrable on [0,1] we define

the operatorf 7→ I(A, f ), which yields them × m matrix with elements

{I(A, f )}m
i, j =1 ≡ A i j

∫ 1

0
ψιi j (s) f (s)ds, whereιi j ≡ max(i, j )−1

m ,
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and

ψρ(s) ≡





1 for s ∈ [ρ,1 − ρ]

1
2 otherwise.

When f (s) = c for all s, we write I(A, c) ≡ I(A, f ) and note thatI(A, c) = cI(A,1) and that

{I(A, c)}m
i, j =1 = A i j (1 − ιi j )c.

Theorem 2. Given(N), (V) and(T), then E(
̂′
) = (IV + 2mω2,−(m − 1)2ω2,0, . . . ,0) and

cov(
̂) = I(A, ω4)m − 2ω4C + ω2I(B, σ 2)+ I(C, σ 4τ ′) 1
m + Ho( 1

m),

where the m× m matrices (assumingκ = 3) are given by

A =




12 −16 4 0 · · ·

−16 28 −16 4
. . .

4 −16 24 −16
. . .

0 4 −16 24
. . .

...
. . .

. . .
. . .

. . .




, B =




8 −8 0 0 · · ·

−8 16 −8 0
. . .

0 −8 16 −8
. . .

0 0 −8 16
. . .

...
. . .

. . .
. . .

. . .




,

C = diag(2,4,4,4, . . .), H = diag(1,1,2,3,4, . . .).

Remark 1. The matrixH has a lower-right element of m−1, such thatHo( 1
m) is not o( 1

m).However,

for the first q autocovariances, where q is a fixed number the reminder term for this submatrix of

cov(
̂) is simply o( 1
m), because all terms of this submatrix are at most o(

q
m) = o( 1

m). Later where

we let q= qm → ∞ as m→ ∞, the last terms is o(qm
m ).

Remark 2. The variance simplifies considerably under(T ′) where IV2 = IQ, in which case we

have that

cov(
̂) = (Ām − 2C)ω4 + B̄ω2IV + C̄ 1
mIV2,

where

Ā ≡ I(A,1) =




12 −16m−1
m 4m−2

m 0 · · ·

−16m−1
m 28m−1

m −16m−2
m 4m−3

m

. . .

4m−2
m −16m−2

m 24m−2
m −16m−3

m

. . .

0 4m−3
m −16m−3

m 24m−3
m

. . .

...
. . .

. . .
. . .

. . .




,

and similar forB̄ andC̄. ThusĀ i j = (1 − ιi j )A i j = m−max(i, j )+1
m A i j for all i , j = 1, . . . ,m.
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Remark 3. Theorem 2 is formulated for the case whereκ = 3. The result for the general case where

κ is arbitrary, requires the upper left2 × 2 submatrix ofA to be written as


 4κ −4(κ + 1)

−4(κ + 1) 4(κ + 4)


 ,

whereas all other elements ofA are unchanged, see the proof of Theorem 2. Restricting our attention

to the case whereκ = 3 has no important implication for our analysis, because the bias properties

require thatω0, ω1 → 1 as m → ∞, which eliminates theκ-terms in A(since4κ + 4(κ + 4) −

8(κ + 1) = 8 does not involveκ, see Hansen & Lunde (2006)).

Several results in the existing literature now follow as special cases of Theorem 2. Ifω2 = 0

we have the result by Jacod (1994) and Barndorff-Nielsen & Shephard (2002) that var(RV(m)) =

2IQ 1
m+o( 1

m), see also Jacod & Protter (1998). Whenω2 > 0 we have the expressions bias(RV(m)) =

2mω2 and var(RV(m)) = 12mω4 + O(1) by Bandi & Russell (2004) and Zhang et al. (2004). More

generally we have the following result by Hansen & Lunde (2006) that var(RV(m)) = (12m−4)ω4+

8ω2IV + 2IQ 1
m + o( 1

m), and the result by Zhou (1996) that var(RV(m)AC1
) = (8m− 12)ω4 + 8ω2IV +

6IQ 1
m + o( 1

m), for RV(m)AC1
≡ γ̂ 0 + 2γ̂ 1, which now follows from Theorem 2 as special cases.

The interesting aspect of Theorem 2 is that adding estimatesof autocovariance terms (that have

a population value that is known to be zero) can increase the precision wheneverω2 > 0. The

following Corollary contains results for the cases where the second and third autocovariances are

included, using weights that minimize the asymptotic variance. For notational convenience we

definevρ ≡
∫ ρ

0 σ
2(s)ds+

∫ 1
1−ρ σ

2(s)ds and we note thatv h
m

= σ 2
1 + · · ·+ σ 2

h + σ 2
m−h+1 + · · ·+ σ 2

m

for integers ofh.

Corollary 1. Define RV(m)AC2
≡ γ̂ 0+2γ̂ 1+γ̂ 2,RV(m)AC3

≡ γ̂ 0+2γ̂ 1+ 7
5 γ̂ 2+ 3

5 γ̂ 3.Under the assumptions

of Theorem 2 both estimators have bias of2ω2 while

var(RV(m)AC2
) = 2mω4 + 4ω2IV + 7IQ 1

m + 2ω2(v2
m

+ ω2)+ o( 1
m),

var(RV(m)AC3
) = 4

5mω4 + 68
25ω

2IV + 208
25 IQ 1

m + 8 21
100ω

2v 2
m

+ 8 12
100ω

2v 3
m

+ 98
25ω

4 + o( 1
m).

Corollary 1 shows that by adding (a linear combination of) higher-order autocovariances can

reduce the variance without affecting the bias (form sufficiently large), as the higher-order terms

(or linear combination of these) have a zero mean and are negatively correlated withγ̂ 0 + 2γ̂ 1, such

that adding a proper linear combination will lead to a reduction of the total variance.

8



Kernel-Based Estimators of Integrated Variance

The linear combinations of the higher-order autocovariances that were included in Corollary 1,

1γ̂ 2 and7
5 γ̂ 2+ 3

5γ̂ 3,where chosen in order to minimize the asymptotic variance that is of orderω4m.

This also led to a reduction of the variance term that is of order m0 (from 8 to 4 and68
25 timesω2IV

respectively), whereas them−1-variance term was increased, and the last observation highlights the

need to study all terms in our analysis of kernel-based estimators.

For notational convenience we defineIVρ ≡
∫ 1

0 ψρ(s)σ
2(s)dsandIQρ ≡

∫ 1
0 ψρ(s)σ

4(s)ds, and

we note thatIV − IVρ = 1
2vρ, and thatIQ − IQρ = O(ρ), such that1m(IQ− IQh

m
) = O( h

m2 ) = o( 1
m).

Corollary 2. Letw = (w0, . . . , wm−1)
′. The bias of RVw is given by

bias(RVw) = (w0 − 1)IV + (w0 − m−1
m w1)2ω

2m = w′(IVd + 2mω2f)− IV,

whered = (1,0, . . . ,0)′ and f = (1,−m−1
m ,0, . . . ,0)′; whereas the variance is given by

var(RVw) = V1ω
4m + V0ω

2 + V−1
1
m + o( 1

m),

where

V1(w) = 12w2
0 + m−1

m w14(7w1 − 8w0)+
m−1∑
j =2

m− j
m w j 8(3w j − 4w j −1 + w j −2)

− 4
mw

2
0 − 8

m

m−1∑
j =1
w2

j ,

V0(w) = 8IVw2
0 +

m−1∑
j =1

16IV j
m
w j (w j − w j −1), and V−1(w) = 2IQw2

0 +
m−1∑
j =1

4IQ j
m
w2

j .

Thus, V1 = o( 1
m) is a necessary condition for the variance ofRVw to vanish, andw0 → 1

as m → ∞ is clearly required forRVw to be generally consistent forIV. While there are other

requirements, such asV0 = o(1) andV−1 = o(m), we shall initially focus on the requirement that

V1 = o( 1
m), which appears to be the most stringent requirement. For thisreason, we seek the kernel

that minimizesV1(w) subject to the constraint thatw0 = 1.

Theorem 3 (Variance Bound for Regular Kernel-Based Estimators). The solution to

w⋆ ≡ arg min
w∈Rm

V1(w), subject tow0 = 1,

is given byw⋆ = (1,w⋆′
2 )

′ wherew⋆
2 ≡ −M−1

22 M21 andM22 andM21 are submatrices of

Ām − 2C =


 M11 M12

M21 M22


 ,

with dimensions(m − 1)× (m − 1) and(m − 1)× 1, respectively. Further, it holds that

mV1(w⋆) = w⋆′(Ām − 2C)w⋆ → 4, as m→ ∞.
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Theorem 3 shows that it is not possible to drive the variance of a regular kernel-based estimator

to zero, asm → ∞. The result shows that 4ω4 is a lower bound for the asymptotic variance. So the

existence of a consistent regular kernel-based estimator is ruled out.3 While consistency is clearly

important, it is worth noticing that the non-vanishing variance term, 4ω4, is likely to be very small

in practice. For example, Hansen & Lunde (2006) estimateω4 to be of an order in the neighborhood

of 10−8 for the stocks of the Dow Jones Industrial Average. Consistency is convenient because it

justifies theδ-method, such that a central limit theorem (CLT) for log(w′
̂), say, follows from a CLT

for w′
̂. Naturally, if 4ω4 is negligible relative to var(w′
̂), the distortions from using theδ-method

to approximate the distribution of log(w′
̂), say, will be extremely modest. Nevertheless, the mere

existence of consistent estimator – the subsample estimator of Zhang et al. (2004) – does challenge

the usefulness of regular kernel-based estimators. So in the following two sections we shall study

the subsample-based estimator and a modified class of kernel-based estimators, where the latter is

motivated by the relation between the subsample estimator and a particular kernel-based estimator.

But first we evaluate how far we can push the precision of regular kernel-based estimators.

Theorem 3 provides a lower bound for the asymptotic varianceof regular kernel-based estima-

tors, derived fromV1. Since the variance also involves the terms,V0 andV−1 it is unclear whether

this bound can be obtained by any kernel. This question is addressed by the following Lemma that

gives a simple example of a scheme forw which achieves the lower bound. This estimator is almost

identical to that introduced to this context by Hansen & Lunde (2003), and later applied by Hansen

& Lunde (2004a).

Lemma 4. Consider the Bartlett-type kernel, where the elements ofwB are given by

w0 = m−1
m

q−1
q , w j = q− j

q for j = 1, . . . ,q, w j = 0 for j > q,

wherew0 = m−1
m w1 in order to eliminate the bias. Given(N), (V), and(T′) it holds that

V1 = 4 1
m + O( 1

q2 ), V0 = O( q
m), V−1 = O(q2

m ),

such thatvar(RVwB) = 4ω4 + O( m
q2 ) + O( q

m), which tends to4ω4 provided that q/m → 0 and

q2/m → ∞ as q,m → ∞.

From Lemma 4 it follows that the optimal rate forq = qm = O(m2/3) in which case var(RVwB) =

4ω4 + O(m−1/3). Since the Bartlett-type kernel in Lemma 4 achieves the lowerbound, it is asymp-

totically efficient in the class of regular kernel estimators.

3While consistency does not require the variance to vanish, consistency is indeed ruled out in the present setting,

becauserk/k (to be defined later) does not vanish in probability.

10
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3.1. Bias Eliminating Regular Kernels

Lemma 5. We defineλ ≡ ω2/IV,

6λ ≡ (Ām − 2C)λ2 + B̄λ+ C̄ 1
m and 4λ ≡ (d + 2mλf)(d + 2mλf)′,

whered andf where defined in Corollary 2. Under the assumptions of Theorem 2 and(T′), we have

that MSE(RVw)/IV2 = w′(6λ + 4λ)w − 2w′(d + 2mλf)+ 1.

While Lemma 5 is useful in order to evaluate the MSE for a givenkernel estimator, it does not

constitute a useful way to define an optimal kernel, such asw⋆ ≡ arg minw MSE(RVw) = (6λ +

4λ)
−1(d + 2mλf), because such a kernel would be extremely sensitive to smallvariations inλ.4

Instead we restrict attention to kernels for whichw0 = m−1
m w1 andw0 → 1 asm → ∞. These

restrictions guarantees that the resulting estimator is asymptotically unbiased, as can we verified

from E(
̂) that was stated in Theorem 2. Note that the Bartlett-type kernel in Lemma 4 satisfies this

criterion. The reason that we do not impose the constraintw0 = 1, is that the MSE may be reduced

by allowingw0 to be slightly smaller than one, (i.e. trading a small (downwards) bias for a reduction

of the variance).

We define them − 1 × 1 vector,v = (v1, . . . , vm−1)
′ = Dw, whereD is them − 1 × m matrix

given by

D =




1 m−1
m 0 0 · · ·

0 0 1 0

0 0 0 1
. . .

...
. . .

. . .



,

and solve the constrained optimization problem, minv v′D6λD′v s.t. w̃1 = 1, using the same tech-

nique as in Theorem 3. Thus we determinev∗
2 = −M−1

22 M21, whereM22 andM21 are submatrices

of D6λD′, and define the kernelw∗
λ = (1, m

m−1, v
∗′
2 )

′.

FIGURE 1 ABOUT HERE

Elements ofw∗ plotted againsti /
√

m (x-axis: [0,2])

m = 78, 390, 1560 and λ = 0.01, 0.001

4This issue can be understood by considering the kernel givenby: w0 = IV/(IV +2ω2m) = 1(1+2λm) andwh = 0

for h ≥ 1. Forλm = 4.5 we havew0 = 1/10, which is unbiased if indeedλm = 4.5, but can be severely biased for other

values ofλ.

11
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Although our kernel is derived under the independent noise assumption, we note that the kernel

has some degree of robustness to mild time dependence in the noise process. Time dependence in

the noise process causes higher-order covariances to have an expected value that is different from

zero, since the kernel above haswi > 0, for i = 2,3, . . . it is somewhat capable of capturing this

deviation from the indpendence assumption.

The rate at which the variance ofRVw∗
λ

converges to 4ω4 can be determined numerically from an

ancillary regression and we find this rate to bem−1/2. We describe the ancillary regressions towards

the end of Section 5.

4. Subsample-Based Estimator

Zhang et al. (2004) have proposed a very stimulating subsample-based estimator of integrated vari-

ance. In an unpublished paper Müller (1993) also studied the use of subsampling to estimate the

variability of financial prices. His motivation was the sameas Zhang et al. (2004), but his analy-

sis was much less formalized, so we will focus entirely on thecontribution of Zhang et al. (2004).

The subsample estimator can be constructed from the grid,G ≡ {t0, t2, . . . , tm}, 5 and the (non-

overlapping) subgrids,Gk j = {t j −1, t j −1+k, . . . , t j −1+c j k}, for j = 1, . . . , k wherec j ≡
⌊

m− j +1
k

⌋
,

and⌊a⌋ denotes the largest integer that is smaller than or equal toa. So the subgrids are such thatGki ∩ Gk j = ∅ for i 6= j andG =
⋃k

j =1Gk j for anyk ≤ m. For each subsample we can calculate the

realized variance

RVGkj
≡
∑

ti ∈Gkj

y2
ti ,ti+k

, whereyti ,ti+k ≡ pti+k − pti ,

with the convention thatyti ,t j = 0 if j > m. Thek-subsampling estimator by Zhang et al. (2004) is

given by

RVsubk = RVGk − m−k+1
mk RVG,

whereRVGk ≡ 1
k

∑k
j =1 RVGkj

.

Theorem 6. It holds that

RVGk = γ̂ 0 +
k∑

h=1

k−h
k (γ̂−h + γ̂ h)− 1

krk,

5In the following we will often suppress the subscript-m to simplify our expressions.

12
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where r1 ≡ 0 and rk ≡ rk−1 + (y1 + · · · + yk−1)
2 + (ym−k+2 + · · · + ym)

2 for k ≥ 2.

SinceRVG = γ̂ 0 it follows thatRVsubk = w′
subk


̂ − rk/k, where

wsubk = (1 − m−k+1
mk , k−1

k ,
k−2

k , . . . ,
1
k ,0, . . . ,0)

′,

and it is very interesting that the subsample-based estimator is almost identical to the kernel-based

estimator that employs this Bartlett-type kernel. The onlydifference is the presence ofrk.

Remark 4. Theorem 6 provide a way to implement the subsampling estimator, because RVsubk (for

any k) can be calculated from the empirical autocovariancesand the recursive formula for rk.

Remark 5. The close relationship between RVsubk and kernel-based estimators, stems from the fact

that yti ,ti+k = yi+1 + · · · + yi+k, such that RVsubk is simply a linear combination of cross products of

intraday returns, yi,my j ,m, i, j = 1, . . . ,m, as is the case for all kernel-based estimators. That the

subsample estimator is closely related to the Bartlett kernel is perhaps not too surprising, because

Bartlett (1950) motivated his kernel with the subsampling idea, see also Anderson (1971, p. 512)

and Priestley (1981, pp. 439–440). Interestingly, Politis, Romano & Wolf (1999) noted that the

subsample estimator (of the long-run variance) of Carlstein (1986) is identical to both the moving

block bootstrap estimator and the Jackknife estimator in this case, see K̈unsch (1989) and Liu &

Singh (1992). Further, the term,1krk, that makes RVsubk distinct from kernel-based estimators is

related to theend effects, see e.g. Priestley (1981, p. 440).

Remark 6. A really surprising result of Theorem 6 is that1
krk, which is innocuous in the context

of conventional stationary time series, is indeed crucial for the consistency of RVsubk . Zhang et al.

(2004) show thatlimm→∞ var(RVsubk) = 0 for a suitable choice of k= km. So 1
krk is responsible for

the increased precision beyond the lower bound,4ω4, that we established for regular kernel-based

estimators in Theorem 3.

5. Modified Kernel-Based Estimators

Having understood the connection between a regular kernel estimator and subsampling and gained

an appreciation of why subsampling is consistent, we are nowin a position to modify the regular

kernel-based estimator to inherit that property.6 Our hope is to deliver a consistent estimator which

is reasonably efficient even in small samples.

6It is interesting here to note the results in Müller (2004) that shows that the most ‘robust’ quadratic estimator is not

a kernel estimator.
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For h ≥ 1 we define

zh ≡ y2
h + 2yh(yh−1 + · · · + y1), and z̃h ≡ y2

m−h+1 + 2ym−h+1(ym−h+2 + · · · + ym),

then it can be shown that

rk =
k−1∑

j =1

(k − j )zj +
k−1∑

j =1

(k − j )z̃j ,

(see the proof of Lemma A.5) such that

RVsubk = (1 − m−k+1
mk )γ̂ 0 +

k−1∑

h=1

k−h
k 2γ̂ h − 1

krk

= (1 − m−k+1
mk )γ̂ 0 +

k−1∑

h=1

k−h
k (2γ̂ h − zh − z̃h) = w′

subk 
̃,
where we use the vector of modified autocovariances estimators,
̃ ≡ (γ̂ 0,2γ̃ 1, . . . ,2γ̃m−1)

′, 2γ̃ h ≡ 2γ̂ h − zh − z̃h, for h ≥ 1.

Thus inspired by the subsample estimator, we consider amodified class of kernel estimators,

given by{w̃′
̃ : w̃ ∈ Rm}. This class of estimators contains at least one consistent estimator of IV,

and as the following lemma shows, this class of estimators isclosely related to subsample-based

estimators.

Lemma 7. Suppose that̃w = (w̃0, . . . , w̃m−1)
′ and(α1, . . . , αm) are such that

w̃h =
m∑

k=h+1

k−h
k αk, for all h = 0, . . . ,m − 1,

or equivantly, that

αk = k[w̃k+1 − 2w̃k + w̃k−1], for all h = 0, . . . ,m − 1,

with the conventioñwm = w̃m+1 = 0, thenw̃′
̃ =
∑m

k=1 αkRVGk .

Independently and concurrently of our results, Zhang (2005) has analyzed subsample-based

estimators of the type
∑m

k=1 αkRVGk subject to certain constraints onαi , i = 1, . . . ,m.

Zhang find the optimalαi s to be

α∗
k = 12

k(k − M+1
2 )

M(M2 − 1)
, for k = 3,4 . . .

whereM = O(m1/2), for exampleM = 5m1/2. As m → ∞ this translated into

w̃∗
[uM] = 2u3 − 3u2 + 1, for [uM] ≥ 2.

Theorem 8 gives the properties of the underlying
̃.
14
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Theorem 8. Given(N), (V) and(T′), it holds that

E(
̃) = (IV + 2mω2,−2(m + 1)ω2 − 2
mIV,− 2

mIV, . . . ,− 2
mIV)′

and

cov(
̃) = cov(
̂)+ Ãω4 + 1
mB̃ω2IV + 1

m2 C̃IV2,

where the upper left q× q sub-matrices of̃A, B̃, andC̃ are given by

Ãq =




0 −20 8 0 · · ·

−20 48 −28 8
. . .

8 −28 40 −28
. . .

0 8 −28 40
. . .

.

.

.
. . .

. . .
. . .

. . .




, B̃q =




0 −8(2) 0 0 · · ·

−8(2) 16(2) −8(3) 0
. . .

0 −8(3) 16(3) −8(4)
. . .

0 0 −8(4) 16(4)
. . .

.

.

.
. . .

. . .
. . .

. . .




,

C̃q =




0 −4 −4 −4 · · ·

−4 8(.5) −8 −8
. . .

−4 −8 8(1.5) −8
. . .

−4 −8 −8 8(2.5)
. . .

.

.

.
. . .

. . .
. . .

. . .




.

Next we seek the optimal unbiased estimator in this modified class of kernel-based estimators.

We define theq × q + 1 matrix

D̃q ≡




1 m+1
m 0 0 · · ·

0 0 1 0

0 0 0 1
. . .

...
. . .

. . .



.

Now we solve the constrained optimization problem, minṽ ṽ′D̃q6̃
q
λ D̃′

qṽ subject toṽ1 = 1, using the

same technique as in Theorem 3. Thus we determineṽ∗
2 = −M−1

22 M21, whereM22 andM21 are

submatrices of̃Dq6̃
q
λD̃′

q, and define the kernel̃w∗
λ = (1, m

m+1, ṽ
∗′
2 )

′.

FIGURE 2 ABOUT HERE

Elements ofw̃∗
λ plotted againsti /

√
m (x-axis: [0,5])

m = 78, 390, 1560 and λ = 0.01, 0.001

Truncation:q = 4
√

m
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For our comparison we use the following scaled estimators

RVwq : The regular kernel estimator

R̃Vwq = m
m−1RVwq = cr RVwq

RVw̃∗
λ
: The modified kernel estimator

R̃Vw̃∗
λ
= (m−1

m+1 + 2
m(�V−1

22 v21))
−1RVw̃∗

λ
= cmRVw̃∗

λ

RVsubk : The ZMA subsample estimator

R̃Vsubk = mk
m(k−1)−(k−1)2

RVsubk = csRVsubk

FIGURE 3 ABOUT HERE

Forλ = 0.0001 make a scatter plot of:c2
r w∗′

λ6�w∗
λ, c2

mw̃∗′
λ 6̃

q
λ w̃∗

λ andc2
sw̃′

subq∗ 6̃
q
λw̃subq∗

againstm = 26,24, . . . ,217, in log-log scale

In our simulation stydy we assume that the observed log priceprocess is given bypt/N =

p∗
t/N + ut/N, for t = 0, . . . , N = 23400. We simulated the true price process,p∗

t/N , as being a

random walk, defined on the unit intervalp∗
t/N ≡

∑t
s=0 εs, whereεt ∼ iid N(0, σ 2

t /N) whereσ 2
t is

a possibly stochastic volatility process, for now we assumethatσ 2
t ≡ 1. Note that var(p∗

1 − p∗
0) =

∑N
s=0

1
N − 1

N = 1, it is also clear that the integrated variance is given by thisnumber asN → ∞.

We simulate the following noise process:ut/N ∼ iid N(0, ω2). Note, that we in this setup will have

thatλ = ω2, and thatE
(
γ̂ 0

)
≃ 1 + m2ω2, wherem.is the number of returns used to computeγ̂ 0.

FIGURE 7 ABOUT HERE

Forλ = 1,0.1,0.01,0.001 MSE signature plot of:RVw∗
λ
andRVw̃∗

λ

against sampling frequencies ranging from 1 second to 300 seconds, in log-log scale

In figure 7 we present MSE signature plots for theRVw∗
λ
andRVw̃∗

λ
, based on 2500 repetitions. It

is evident that the MSE of the regular kernel estimator levels of to the lower bound represented by

the punctuated line. In contrast the modified kernel estimator keeps tending to zero.
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5.1. Maximum Likelihood Estimator of Integrated Variance

We now compare the rate of convergence of the modified kernel estimator to the rate that is achieved

by a maximum likelihood estimator ofIV. So we consider a simple framework where the noise is

assumed to be iid and Gaussian distributed, i.e.ui ∼ N(0, ω2). Given(T′) it now follows that

(yi , . . . , ym)
′ ∼ Nm

(
0, 6IV ,ω2

)
,

where them × m covariance matrix,, is given by

6IV,ω2 ≡




IV
m 0 0 · · ·

0 IV
m 0

0 0 IV
m

. . .

...
. . .

. . .




+




2ω2 −ω2 0 · · ·

−ω2 2ω2 −ω2 . . .

0 −ω2 2ω2 . . .

...
. . .

. . .
. . .




.

Let σ̂ 2
ML andω̂2

ML denote the maximum likelihood estimators ofIV andω2, respectively. The

asymptotic properties of̂σ 2
ML and ω̂2

ML are given from classical results about the MA(1) process.7

By adopting the expression given in Aı̈t-Sahalia et al. (2003, proposition 1) to our notation, we have

that asymptotic covariance matrix for(σ̂ 2
ML , ω̂

2
ML ) is given by

IV2

m2


 2m + 4m

√
4λm + 1 −

(
2mλ+ 1 +

√
4mλ+ 1

)

• 1
2m (2mλ+ 1)

(
2mλ+ 1 +

√
4mλ+ 1

)


 .

So forλ > 0 we have

avar


 m1/4σ̂

2
ML

m1/2ω̂
2
ML


 = IV2


 8

√
λ 0

0 2λ2


 ,

where avar(·) denotes the asymptotic covariance matrix. This shows that the maximum likelihood

estimator ofIV converges at the same rate,m1/4, as the modified kernel estimator, which indeed

has been show to be the optimal rate of convergence in this context, see Stein (1987) and Gloter &

Jacod (2001a, 2001b). Further̂ω2
ML converges at the faster rate,m1/2, and since the limit distribution

is Gaussian, see e.g. Aı̈t-Sahalia et al. (2003), we note that the two estimators are asymptotically

independent.

7SettingIV = 0 takes the root of the underlying MA(1) process to−1. So for the interesting case withIV > 0, the

local-to-zero ofIV /m leads to a local-to−1 root, as analyzed by Anderson & Takemura (1986), Tanaka & Satchell (1989),

and Shephard (1993). However,IV /m is sufficiently “non-local” to zero that it does not affect the limiting (Gaussian)

distribution of the maximum likelihood estimators.
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The special case where there is no market microstructure noise,(λ = 0) results in faster rates of

convergence. Specifically we find that,

avar


 m1/2σ̂

2
ML

m3/2ω̂
2
ML


 = IV2


 6 −2

−2 1


 ,

and it is interesting to note that avar(m1/2σ̂
2
ML ) = 6IV2. So the asymptotic variance ofσ̂ 2

ML is in this

case three times that of the realized variance, which is the constrained(λ = 0)maximum likelihood

estimator. Thus the loss in estimating the nuisance parameterω2, when it is truly zero, is identical

to that ofRV(m)AC1
≡ γ̂ 0 + 2γ̂ 1, which also has var(RV(m)AC1

) = 6IV2 1
m + o( 1

m) whenω2 = 0, see Zhou

(1996).

6. Practical Implementation

In practiceλ is not known, however it is straightforward to estimateω2. Combining results of The-

orem 2 concerningRV ≡ γ̂ 0 and our results forRVw̃ ≡ w̃′
̃ shows that

ω̂
2 ≡ RV− RVw̃

2m
p→ ω2,

sinceE(RV) = IV + 2ω2m, var(RV) = O(m) andRVw̃
p→ IV. Given the consistency ofRVw̃ it

follows that

λ̂ ≡ RV− RVw̃

2mRṼw
= γ̂ 0 − w̃′
̃

2m · w̃′
̃ p→ λ.

This leads to a two-step estimator of integrated variance.

1. Given some initial value forλ (λo say), we construct̃w∗
λo, and estimate

λ̂ = λ̂(λo) ≡ max

(
γ̂ 0 − w̃∗′

λo
̃
2m · w̃∗′

λo
̃ ,0) .
2. Givenλ̂ we determinẽw∗

λ̂
, and define our two-step estimator ofIV to be:

RVw̃∗
λ̂
≡ w̃∗′

λ̂

̃.

Naturally this procedure could be iterated, increasing theprecision of our estimate ofλ.

To assess the MSE loss of this procedure, we continued the simulation study outlined above. As

the initial value forλ we useλo = γ̂ 0/(2m), wherem is the number of returns used to computeγ̂ 0.
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FIGURE 5 ABOUT HERE

Forλ = 0.1,0.01,0.001,0.0001

Regular Kernel RV: MSE at true values ofλ relative to MSE at two-step and oo-step.

against sampling frequencies ranging from 1 second to 300 seconds,

horisontal axis in log scale

FIGURE 6 ABOUT HERE

Forλ = 0.1,0.01,0.001,0.0001

Modified Kernel RV: MSE at true values ofλ relative to MSE at two-step and oo-step.

against sampling frequencies ranging from 1 second to 300 seconds,

horisontal axis in log scale

In Figure 5 and 6 we present signature plots of the MSE ofRVw∗
λ
andRVw̃∗

λ
.at true values ofλ

(presented in Figure 5) relative to MSE at two-step and oo-step estimates ofλ. The figures show

that the loss of having to estimateλ is minimal for empirically relevant values ofλ (that is for

λ ≤ 0.001). We also note that the regular kernel is less sensitive to the estimation problem.

7. Conclusion

We have provided a systematic analysis of regular kernel-based estimators under the assumption

that market microstructure noise is independent of the efficient prices and independent of itself (at

different points in time). While this assumption is reasonable when prices are not sampled too

frequently, such as every 15 ticks or so, there is overwhelming evidence that market microstructure

noise has a more sophisticated dependence structure when sampling occurs at ultra-high frequencies,

such as every tick. We are therefore, in separate papers, extending our analysis of kernel-based

estimators to the situation with more general assumptions about the noise process.

We have showed that regular kernel-based estimators can be quite accurate estimators of quadratic

variation, however they are always inconsistent. Taking inspiration from the consistent subsampling

estimator, a new modified kernel estimator is suggested which is consistent and has good finite

sample properties. We expect that these kernel-based estimators will be particularly useful in a

multivariate context, which we persue in future research.

Concurrently and independently of the present paper, Zhang(2005) has improved the subsample

estimator. While the subsample estimator by Zhang et al. (2004) is a linear combination of two
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types of subsamples, the estimator by Zhang (2005) is a linear combinations of multiple types of

subsamples, and this improves the rate of convergence to theoptimal rate,m1/4. It follows directly

that there is a one-to-one mapping between the class of modified kernel estimators and all linear

combinations of subsample estimators.

A. Proof of Theorem 2 and Intermediate Results

Proof of Lemma 1. First we note thatt⌈sm⌉−1,m = t⌈(s− 1
m )m⌉,m and by(T) we have that

sup
s∈[0,1]

∣∣(t⌈sm⌉,m − t⌈sm⌉−1,m)− (τ (s)− τ(s − 1
m))

∣∣ = o(m−1),

such that

sup
s∈[0,1]

∣∣∣ t⌈sm⌉,m−t⌈sm⌉−1,m

1/m − τ ′(s)
∣∣∣ ≤ sup

s∈[0,1]

∣∣∣ t⌈sm⌉,m−t⌈sm⌉−1,m

1/m − τ (s)−τ(s− 1
m )

1/m

∣∣∣

+ sup
s∈[0,1]

∣∣∣τ ′(s)− τ (s)−τ(s− 1
m)

1/m

∣∣∣ = o(1)+ o(1), (A.1)

where the last term iso(1) sinceτ ′ is bounded. (A.1) clearly implies the result stated in the Lemma,

(the two are equivalent given the continuity ofτ ′(s)).

Lemma A.1. We define xi,h ≡ yi yi+h. Given(N) and(V) we have that

Part I E(xi,h) var(xi,h) cov(xi,h, xi±1,h)

h = 0 σ 2
i + 2ω2 (2κ + 2)ω4 + 8ω2σ 2

i + 2σ 4
i (κ − 1)ω4

h = 1 −ω2 (κ + 2)ω4 + 2ω2(σ 2
i + σ 2

i+1)+ σ 2
i σ

2
i+1 ω4

h ≥ 2 0 4ω4 + 2ω2(σ 2
i + σ 2

i+h)+ σ 2
i σ

2
i+h ω4

while cov(xi,h, xi±k,h) = 0, k ≥ 2 for all h = 0,1, . . . .

Part II cov(xi,h, xi,h+1) cov(xi,h, xi−1,h+1) cov(xi,h, xi−1,h+2)

h = 0 −(κ + 1)ω4 − 2ω2σ 2
i −(κ + 1)ω4 − 2ω2σ 2

i 2ω4

h ≥ 1 −2ω4 − ω2σ 2
i −2ω4 − ω2σ 2

i+h ω4,

while all other covariance terms are zero.

Proof. (Part I) The expected values are given from

E(xi,h) = E(yi yi+h) = E(y∗
i + ui − ui−1)(y

∗
i+h + ui+h − ui+h−1),

which shows thatE(xi,0) = E(y∗2
i )+ E(ui )

2+ E(u2
i−1) = σ 2

i +2ω2, sincey∗
i , ui , andui−1 are pair-

wise uncorrelated. Similarly we find thatE(xi,1) = E[(ui )(−ui )] + 0 = −ω2 and thatE(xi,h) = 0

for h ≥ 2.
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Next, we turn to the variance and covariance terms, where we make use of the identities,

var(ei ) = E(e2
i ) = 2ω2 and

E(e4
i ) = E[u4

i + u4
i−1 + 6u2

i u2
i−1 − 4ui u

3
i−1 − 4u3

i ui−1] = (2κ + 6)ω4.

For h = 0 we have

E(x2
i,0) = E(y4

i ) = E(y∗
i +ei )

4 = E(y∗4
i )+ E(e4

i )+6E(y∗2
i e2

i ) = 3σ 4
i + (2κ+6)ω4+6σ 2

i 2ω2,

and

E(xi,0xi+1,0) = E(y2
i y2

i+1) = E(y∗
i + ei )

2(y∗
i+1 + ei+1)

2

= E[(y∗2
i + e2

i + 2y∗
i ei )(y

∗2
i+1 + e2

i+1 + 2y∗
i+1ei+1)]

= E[(y∗2
i + e2

i )(y
∗2
i+1 + e2

i+1)] = E[(y∗2
i + u2

i + u2
i−1)(y

∗2
i+1 + u2

i+1 + u2
i )]

= σ 2
i σ

2
i+1 + (σ 2

i + σ 2
i+1)2ω

2 + (κ + 3)ω4, (A.2)

E(xi,0xi+h,0) = E(y2
i y2

i+h) = σ 2
i σ

2
i+h + (σ 2

i + σ 2
i+h)2ω

2 + 4ω4, for h ≥ 2, (A.3)

such that

var(xi,0) = E(x2
i,0)− [E(xi,0)]

2 = [3σ 4
i + (2κ + 6)ω4 + 12σ 2

i ω
2] − [σ 2

i + 2ω2]2

= 2σ 4
i + (2κ + 2)ω4 + 8σ 2

i ω
2,

cov(xi,0, xi+1,0) = (κ − 1)ω4, and cov(xi,0, xi+h,0) = 0 for h ≥ 2.

For h = 1 we findE(x2
i,1) = E(y2

i y2
i+1) = E(xi,0xi+1,0) which is derived in (A.2),

E(xi,1xi+1,1) = E(y∗
i + ui − ui−1)(y

∗
i+1 + ui+1 − ui )

2(y∗
i+2 + ui+2 − ui+1)

= E[(ui )(−2ui+1ui )(−ui+1)] = 2E[ui ui+1ui ui+1] = 2ω4,

andE(xi,1xi+2,1) = ω4. SinceE(xi,1)E(x j ,1) = (−ω2)(−ω2) = ω4 for all i, j = 1, . . . ,m, we find

that

var(xi,1) = σ 2
i σ

2
i+1 + (σ 2

i + σ 2
i+1)2ω

2 + (κ + 3)ω4 − (ω2)2

= σ 2
i σ

2
i+1 + (σ 2

i + σ 2
i+1)2ω

2 + (κ + 2)ω4,

and cov(xi,1, xi+1,1) = ω4 and cov(xi,1, xi+h,1) = 0, for h ≥ 2.

For h ≥ 2 we haveE(x2
i,h) = E(y2

i y2
i+h) = E(xi,0xi+h,0) which is derived in (A.3), such that

var(xi,h) = σ 2
i σ

2
i+h + 2(σ 2

i + σ 2
i+h)ω

2 + 4ω4. Next, we have that

E(xi,hxi+1,h) = E(ei ei+hei+1ei+1+h) = ω4,
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while E(xi,hxi+k,h) = 0 for k ≥ 2. So cov(xi,h, xi±1,h) = ω4 and cov(xi,h, xi±k,h) = 0 for k ≥ 2.

(Part II) We consider

E(xi,0xi,1) = E(y2
i yi yi+1) = E[(y∗

i + ei )
3(y∗

i+1 + ei+1)]

= E[(y∗2
i + 2y∗

i ei + e2
i )(y

∗
i + ei )(−ui )]

= E[(y∗2
i + 2y∗

i ei + e2
i )(y

∗
i + ui − ui−1)(−ui )]

= −σ 2
i ω

2 − 2σ 2
i ω

2 + E[e2
i (ui − ui−1)(−ui )]

= −σ 2
i ω

2 − 2σ 2
i ω

2 + E[(u2
i + u2

i−1 − 2ui−1ui )(ui − ui−1)(−ui )]

= −σ 2
i ω

2 − 2σ 2
i ω

2 − κω4 − ω4 − 2ω4 = −3σ 2
i ω

2 − (κ + 3)ω4,

such that cov(xi,0, xi,1) = −3σ 2
i ω

2−6ω4−(σ 2
i +2ω2)(−ω2) = −2σ 2

i ω
2−(κ+1)ω4, and similarly

E(xi,0xi−1,1) = E(y2
i yi−1yi ) = E[(y∗2

i + 2y∗
i ei + e2

i )(y
∗
i + ui − ui−1)(ui−1)]

= −σ 2
i ω

2 − 2σ 2
i ω

2 + E[e2
i (ui − ui−1)(ui−1)]

= −σ 2
i ω

2 − 2σ 2
i ω

2 + E[(u2
i + u2

i−1 − 2ui−1ui )(ui − ui−1)(ui−1)]

= −σ 2
i ω

2 − 2σ 2
i ω

2 − ω4 − κω4 − 2ω4 = −3σ 2
i ω

2 − (κ + 3)ω4,

which shows that cov(xi,0, xi−1,1) = −2σ 2
i ω

2 − (κ + 1)ω4. For k ≥ 1 we have

E(xi,0xi+k,1) = E[(y∗2
i + 2y∗

i ei + e2
i )(y

∗
i+k + ei+k)(y

∗
i+k+1 + ei+k+1)]

= E[(y∗2
i + 2y∗

i ei + e2
i )(−u2

i+k)]

= −E[(y∗2
i + u2

i + u2
i−1)(u

2
i+k)] = −σ 2

i ω
2 − 2ω4,

and similarly fork ≤ −2. Thus cov(xi,0, xi+k,1) = 0 for k ≥ 1 andk ≤ −2.

The only non-zero covariance betweenxi,0 andxi+k,2, is

cov(xi,0, xi−1,2) = cov(e2
i ,ei−1ei+1) = E(e2

i ui−1(−ui )) = E(2u2
i−1u2

i ) = 2ω4,

and for j ≥ 3 we find that cov(xi,0, xi+k, j ) = 0 for all k.

For h ≥ 1 we have

cov(xi,h, xi,h+1) = E(yi yi+h yi yi+h+1) = E[y2
i ui+h(−ui+h)] = −(σ 2

i + 2ω2)ω2,

cov(xi,h, xi−1,h+1) = E(yi yi+h yi−1yi+h) = E[−ui−1ui−1y2
i+h] = −(σ 2

i+h + 2ω2)ω2,

and similarly cov(xi,h, xi−1,h+2) = E(ei ei+hei−1ei+h+1) = E(−ui−1)(ui+h)(ui−1)(−ui+h) = ω4.
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Lemma A.2. (a)
∑m−h

i=1 (σ
2
i + σ 2

i+h) = 2
∫ 1

0 ψ h
m
(s)σ 2(s)ds, and (b) given(V) and qm = O(m1/2)

it holds that

m
m−qm∑

i=1

σ 2
i σ

2
i+qm

−
∫ 1

0
ψqm

m
(s)σ 4(s)ds = o(1).

Proof. (a)Sinceσ 2
i =

∫ i
m

i−1
m
σ 2(s)ds, the first result follows from the identity

∑m−h
i=1 σ

2
i =

∫ m−h
m

0 σ 2(s)ds.

(b)We note that
∑m−qm

i=1 σ 2
i σ

2
i+qm

=
∑m−qm

i=1 [σ 4
i +σ 2

i (σ
2
i+qm

−σ 2
i )] and similarly that

∑m−qm
i=1 σ 2

i σ
2
i+qm

=
∑m−qm

i=1 [σ 4
i+qm

− σ 2
i+qm

(σ 2
i+qm

− σ 2
i )] such that

m−qm∑

i=1

σ 2
i,mσ

2
i+qm,m = 1

2

m−qm∑

i=1

(σ 4
i,m + σ 4

i+qm,m)− 1

2

m−qm∑

i=1

(σ 2
i+qm,m − σ 2

i,m)
2. (A.4)

First we consider the first term on the right hand side. Letδi,m ≡ ti,m − ti−1,m and note thatδi,m =

O(m−1) given (T). So for arbitrary pairs(si,m, s̃i,m), i = 1, . . . ,m of points, wheresi,m, s̃i,m,∈

[ti−1,m, ti,m] we have that

m
m−qm∑

i=1

|σ 4(si,m)− σ 4(s̃i,m)|δ2
i,m = m−1/2

m−qm∑

i=1

|σ 4(si,m)− σ 4(s̃i,m)|δ2
i,mm3/2

≤ m−1/2
m∑

i=1

|σ 4(si,m)− σ 4(s̃i,m)| = o(1),

where the equality holds form sufficiently large given(V).

Next, we letsi,m ands̃i,m be the points in [ti−1,m, ti,m] that are such thatσ 2(si,m)δi,m =
∫ ti,m

ti−1,m
σ 2(s)ds

andσ 4(s̃i,m)δi,m =
∫ ti,m

ti−1,m
τ ′(s)σ 4(s)ds, and we note that these points exist given the continuity of

σ 2 andτ ′. In now follows that

m
m−qm∑

i=1

σ 4
i,m = m

m−qm∑

i=1

(∫ ti,m

ti−1,m

σ 2(s)ds

)2

= m
m−qm∑

i=1

σ 4(si,m)δ
2
i,m,

=
m−qm∑

i=1

ti,m−ti−1,m
1/m σ 4(s̃i,m)δi,m + o(1)

=
m−qm∑

i=1

τ ′(s̃i,m)σ
4(s̃i,m)δi,m +

m−qm∑

i=1

[
τ (s)−τ(s− 1

m)

1/m − τ ′(s̃i,m)]σ
4(s̃i,m)δi,m + o(1)

=
∫ 1− qm

m

0
τ ′(s)σ 4(s)ds+ o(1),

where we used that
m−qm∑

i=1

[
τ (s)−τ(s− 1

m )

1/m − τ ′(s̃i,m)]σ
4(s̃i,m)δi,m ≤ sup

s

∣∣∣ τ (s)−τ(s−
1
m )

1/m − τ ′(s̃i,m)

∣∣∣
m∑

i=1

σ 4(s̃i,m)δi,m

= o(1)
∫ 1

0
σ 4(s)ds = o(1).
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By similar arguments we find thatm
∑m−qm

i=1 σ 4
i+qm,m =

∫ 1
qm
m
σ 4(s)ds+ o(1), such that the first term

on the right hand side of (A.4) can be expressed asm
2

∑m−qm
i=1 (σ 4

i + σ 4
i+qm

) =
∫ 1

0 ψqm
m
(s)σ 4(s)ds+

o(1).

Now consider the second term on the right hand side of (A.4).

m
m−qm∑

i=1

(σ 2
i,m − σ 2

i+qm,m)
2 = m

m−qm∑

i=1

[δi,mσ
2(si,m)− δi+qm,mσ

2(si+qm,m)]
2

= m−1/2
m−qm∑

i=1

[m3/4δi,mσ
2(si,m)− m3/4δi+qm,mσ

2(si+qm,m)]
2,

≤ c2
mm−1/2

m−qm∑

i=1

[σ 2(si,m)− σ 2(si+qm,m)]
2, (A.5)

where

cm ≡ sup
i

m3/4δi,m = m−1/4 sup
i

δi,m
1/m ≤ m−1/4[sup

s
τ ′(s)+ sup

i
| δi,m

1/m − τ ′( i
m)|] = O(m−1/4).

Now for m sufficiently large it holds that

[σ 2(si,m)− σ 2(si+qm,m)]
2 ≤ |σ 2(si,m)− σ 2(si+qm,m)|

≤ |σ 2
(si )

− σ 2
(ti )

| + |σ 2
(ti )

− σ 2
(ti+1)

| + · · · + |σ 2
(ti+qm−1)

− σ 2
(si+qm)

|,

where we writeσ 2
(si )

as short forσ 2(si,m). So (A.5) can be written asqm sums that each are of order

c2
mo(1) given (V), which shows that (A.5) iso(m−1/2qm). So it now follows thatm

∑m−qm
i=1 (σ 2

i,m −

σ 2
i+qm,m

)2 = o(1) provided thatqm = O(m1/2). This completes the proof.

Proof of Theorem 2.The results of Lemma A.1 are used extensively. First we note that

var(γ̂ 0) = var(
m∑

i=1

xi,0) =
m∑

i=1

var(xi,0)+
m∑

i=2

cov(xi,0, xi−1,0)+
m−1∑

i=1

cov(xi,0, xi+1,0)

=
m∑

i=1

[(2κ + 2)ω4 + 8σ 2
i ω

2 + 2σ 4
i ] + 2(κ − 1)(m − 1)ω4

= (4κm − 2(κ − 1))ω4 + 8IVω2 + 2IQ 1
m + o( 1

m).

This result is identical to that derived in Hansen & Lunde (2006). Similarly,

var(γ̂ 1) =
m−1∑

i=1

var(xi,1)+
m−1∑

i=2

cov(xi,1, xi−1,1)+
m−2∑

i=1

cov(xi,1, xi+1,1)

=
m−1∑

i=1

[(κ + 2)ω4 + 2(σ 2
i + σ 2

i+1)ω
2 + σ 2

i σ
2
i+1] + 2(m − 2)ω4

= ((κ + 4)m − (κ + 6))ω4 + 4ω2IV( 1
m )

+ 1
mIQ( 1

m )
+ o( 1

m).

24



Kernel-Based Estimators of Integrated Variance

For h ≥ 2 we find

var(γ̂ h) =
m−h∑

i=1

var(xi,h)+
m−h∑

i=2

cov(xi,h, xi−1,h)+
m−h−1∑

i=1

cov(xi,h, xi+1,h)]

=
m−h∑

i=1

[4ω4 + 2(σ 2
i + σ 2

i+h)ω
2 + σ 2

i σ
2
i+h] + 2(m − h − 1)ω4

= (6m − 6h − 2)ω4 + 4ω2IV( h
m )

+ 1
mIQ( h

m )
+ o( h

m).

Next, we consider the covariance terms.

cov(γ̂ 0, γ̂ 1) = cov(
m∑

i=1

xi,0,

m−1∑

i=1

xi,1) =
m−1∑

i=1

cov(xi,0, xi,1)+
m−1∑

i=1

cov(xi+1,0, xi,1)

=
m−1∑

i=1

[−2σ 2
i ω

2 − (κ + 1)ω4] +
m−1∑

i=1

[−2σ 2
i+1ω

2 − (κ + 1)ω4]

= −(2κ + 2)(m − 1)ω4 − 4ω2IV( 1
m)
,

and similarly

cov(γ̂ 0, γ̂ 2) = cov(
m∑

i=1

xi,0,

m−2∑

i=1

xi,2) =
m−2∑

i=1

cov(xi+1,0, xi,2) = (2m − 4)ω4,

while cov(γ̂ 0, γ̂ k) = 0 for k ≥ 3.

For h ≥ 1 we find:

cov(γ̂ h, γ̂ h+1) = cov(
m−h∑

i=1

xi,h,

m−h−1∑

i=1

xi,h+1) =
m−h−1∑

i=1

cov(xi,h, xi,h+1)+
m−h−1∑

i=1

cov(xi+1,h, xi,h+1)

= −
m−h−1∑

i=1

(σ 2
i + 2ω2)ω2 −

m−h−1∑

i=1

(σ 2
i+h+1 + 2ω2)ω2

= −4(m − h − 1)ω4 − 2ω2IVh+1
m
,

cov(γ̂ h, γ̂ h+2) = cov(
m−h∑

i=1

xi,h,

m−h−2∑

i=1

xi,h+2) = (m − h − 2)ω4,

which cov(γ̂ h, γ̂ h+k) = 0 for k ≥ 3.

Proof of Corollary 1. From Theorem 2 we have that

cov(2γ̂ 2, γ̂ 0 + 2γ̂ 1) = (4 − 16)(m − 2)ω4 − 8ω2IV 2
m

= −12mω4 + 24ω4 − 8ω2IV 2
m
,

such that

var(γ̂ 0 + 2γ̂ 1 + γ̂ 2) = var(γ̂ 0 + 2γ̂ 1)+ 1
4var(2γ̂ 2)+ 1

22cov(γ̂ 0 + 2γ̂ 1,2γ̂ 2)

= 8(m − 1)ω4 + 8ω2IV + 6IQ 1
m + o( 1

m)
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+24
4 (m − 2)mω4 − 8

4ω
4 + 16

4 ω
2IV 2

m
+ 4

4IQ 2
m

1
m + o( 1

m)

−12mω4 + 24ω4 − 8ω2IV 2
m

= [8 + 24
4 − 12]mω4 + (−8 − 12− 2 + 24)ω4

+8ω2IV − 4ω2IV 2
m

+ 6IQ 1
m + IQ 2

m

1
m + o( 1

m)

= 2mω4 + 4ω2IV + 2ω2(v2
m

+ ω2)+ 7IQ 1
m + o( 1

m).

The second result follows by definingw = (1,1, 7
10,

3
10)

′ and

w′A [4]w = 4
5, w′B[4]w = 68

25, w′C[4]w = 208
25 ,

whereA [4], B[4], andC[4], are the upper left 4× 4 submatrices ofA, B, andC, respectively, and the

calculations

[ω4] −1(−32+ 28)− 2 7
10(8 − 32+ 24 7

10)− 3 3
10(8 − 32 7

10 + 24 3
10)− 2w′C[4]w = 98

25,

[vρ ] (−16+ 16 7
10)

7
10 = −16 21

100 and (−16 7
10 + 16 3

10)
3
10 = −16 12

100,

that quantifies the remaining terms.

Proof of Corollary 2. From Theorem 2 it follows thatE(w′
̂) = w0(IV + 2ω2m)− w1
m−1

m 2ω2m,

such that bias(w′
̂) = (w0 − 1)IV + (w0 − m−1
m w1)2ω2m. The result for the variance follows by the

structure of the matricesA, B, andC.

Proof of Theorem 3. It follows directly that

mV1(w) = w′(Ām − 2C)w = M11 + w′
2M22w2 + 2M12w2, (A.6)

using the constraintw0 = 1, and the decomposition of them × m matrix

Ām − 2C =


 M11 M12

M21 M22


 .

By the first order condition of the right hand side of (A.6) yields w⋆
2 ≡ −M−1

22 M21, and by substitu-

tion it follows that

mV1(w⋆) = w⋆′(Ām − 2C)w⋆ = M11 − M12M
−1
22 M21.

While a closed-form expression formV1(w⋆) is unavailable it is easy to establish thatmV1(w⋆) → 4

asm → ∞, numerically. The following table givesmV1(w⋆) for some values ofm.

m 10 50 100 200 500 1000 2000 5000

mV1(w⋆) 4.8837 4.1732 4.0850 4.0418 4.0165 4.008 4.0041 4.0016
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Proof of Lemma 4. The first result follows from the identity

V1 = 12m−1
m

q−1
q + m−1

m (
q−1

q )24(7 − 8m−1
m )+ m−2

m
q−2

q 8(3q−2
q − 4q−1

q + m−1
m

q−1
q )

+
q∑

j =3

m− j
m

q− j
q 8(3q− j

q − 4q− j +1
q + q− j +2

q )− 4
m(

m−1
m

q−1
q )2 − 8

m

q∑

j =1

(q− j )2

q2

= 4−1+2q+5m−q2−6m2−6qm+2m3+q2m+m2q2+m2q
m3q2

= 4

m
+ 1

m
O( 1

m2q2 + 1
m2q

+ 1
mq2 + 1

m2 + 1
q2 + 1

mq + m
q2 + 1

m + 1
q )

Similarly we have that

V0 = 8(m−1
m

q−1
q )2 + m−1

m (
q−1

q )216(1 − m−1
m )+

q∑

j =2

m− j
m

q− j
q 16(q− j

q − q− j +1
q )

= 8
3

−3+6m+6q+3m2q−3m2−3q2+q3m−7qm
m2q2 = O( q

m),

and

V−1 = 2(m−1
m

q−1
q )2 +

q∑

j =1

m− j
m 4(q− j

q )2

= 1
3

6−12m−12q−10m2q+6m2+6q2+24qm−11mq2+4m2q3−mq4

m2q2 = O(q2

m )

B. Proofs of Section 4

Proof of Theorem 6.The first couple of subgrids are given byG21 = {t0, t2, . . . , tm−1}, G22 = {t1, t3, . . . , tm},G31 = {t0, t3, . . . , tm−2}, G32 = {t1, t4, . . . , tm−1}, G33 = {t2, t5, . . . , tm},G41 = {t0, t4, . . . , tm−3}, G42 = {t1, t5, . . . , tm−2}, . . . .

Sinceyti ,ti+ j = yi+1 + · · · + yi+ j , we find that

RVG21
+ RVG22

= (y1 + y2)
2 + · · · + (ym−2 + ym−1)

2 +

(y2 + y3)
2 + · · · + (ym−1 + ym)

2

= 2
m∑

i=1

y2
i + 2

m−1∑

i=1

yi yi+1 − r2 = 2(γ̂ 0 + γ̂ 1)− r2

wherer2 = y2
1 + y2

m. Similarly for q = 3 we have

3∑

j =1

RVG3 j
= (y1 + y2 + y3)

2 + · · · + (ym−4 + ym−3 + ym−2)
2 +

(y2 + y3 + y4)
2 + · · · + (ym−3 + ym−2 + ym−1)

2 +
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(y3 + y4 + y5)
2 + · · · + (ym−2 + ym−1 + ym)

2

= 3
m∑

i=1

y2
i + 4

m−1∑

i=1

yi yi+1 + 2
m−2∑

i=1

yi yi+2 − r3

= 3γ̂ 0 + 4γ̂ 1 + 2γ̂ 2 − r3,

where the remainder is given byr3 = y2
1 + y2

m + (y1 + y2)
2 + (ym−1 + ym)

2 = r2 + (y1 + y2)
2 +

(ym−1 + ym)
2.

Similarly for k = 4 we find

4∑

j =1

RVG4 j
= 4

m∑

i=1

y2
i + 6

m−1∑

i=1

yi yi+1 + 4
m−3∑

i=1

yi yi+2 + 2
m−4∑

i=1

yi yi+3 − r4,

wherer4 = r3 + (y1 + y2 + y3)
2 + (ym−2 + ym−1 + ym)

2 and in the general case we

k∑

j =1

RVGkj
= k

m∑

i=1

y2
i + 2(k − 1)

m−1∑

i=1

yi yi+1 + · · · + 2
m−k∑

i=1

yi yi+k − rk

= kγ̂ 0 +
k∑

h=1

2(k − h)γ̂ h − rk,

whererk = rk−1 + (y1 + · · · + yk−1)
2 + (ym−k+2 + · · · + ym)

2. So it follows that

RVGk = k−1
k∑

j =1

RVGkj
= 1

k [kγ̂ 0 +
k∑

h=1

2(k − h)γ̂ h] − rk
k = γ̂ 0 + 2

k∑

h=1

k−h
k γ̂ h − rk

k ,

which completes the proof.

Lemma A.3. Define zj ≡ x j ,0 + 2
∑ j −1

i=1 x j −i,i for j = 1, . . . ,m − 1. Then it holds thatvar(z1) =

8ω4 + 8ω2σ 2
1 + 2σ 4

1, whereas

var(zj ) = 12ω4 + 8ω2(σ 2
1 + · · · + σ 2

j )+ σ 2
j (4σ

2
1 + · · · + 4σ 2

j −1 + 2σ 2
j ), for j ≥ 2.

The covariances are given by:cov(zj , zj +1) = −6ω4−4ω2(σ 2
1+· · ·+σ 2

j ) whilecov(zj , zj +h) = 0

for |h| ≥ 2, j = 1,2, . . . .

(Under (T′) whereσ 2
i = σ 2/m we havevar(zj ) = 12ω4 + 8 jω2IV/m + 4( j − 1

2)IV
2/m2 for

j ≥ 2 andcov(zj , zj +1) = −6ω4 − 4 jω2IV/m for all j ≥ 1).

Proof of Lemma A.3. From Lemma A.1 we have that

var(z1) = var(x1,0) = 8ω4 + 8ω2σ 2
1 + 2σ 4

1,

var(z2) = var(x2,0)+ 4var(x1,1)+ 4cov(x2,0, x1,1)

= [8ω4 + 8ω2σ 2
2 + 2σ 4

2] + 4[5ω4 + 2(σ 2
1 + σ 2

2)ω
2 + σ 2

1σ
2
2]
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+4[−4ω4 − 2ω2σ 2
2]

= 12ω4 + 8ω2(σ 2
1 + σ 2

2)+ σ 2
2(4σ

2
1 + 2σ 2

2),

var(z3) = var(x3,0)+ 4var(x2,1)+ 4var(x1,2)

+4cov(x3,0, x2,1)+ 4cov(x3,0, x1,2)+ 8cov(x2,1, x1,2)

= [8ω4 + 8ω2σ 2
3 + 2σ 4

3] + 4[5ω4 + 2(σ 2
2 + σ 2

3)ω
2 + σ 2

2σ
2
3]

+4[4ω4 + 2(σ 2
1 + σ 2

3)ω
2 + σ 2

1σ
2
3]

+4[−4ω4 − 2ω2σ 2
3] + 4[0] + 8[−2ω4 − ω2σ 2

3]

= 12ω4 + 8ω2(σ 2
1 + σ 2

2 + σ 2
3)+ σ 2

3(4σ
2
1 + 4σ 2

2 + 2σ 2
3),

var(z4) = var(x4,0)+ 4var(x3,1)+ 4var(x2,2)+ 4var(x1,3)

+4cov(x4,0, x3,1)+ 4cov(x4,0, x2,2)+ 4cov(x4,0, x1,3)

+8cov(x3,1, x2,2)+ 8cov(x3,1, x1,3)+ 8cov(x2,2, x1,3)

= [8ω4 + 8ω2σ 2
4 + 2σ 4

4] + 4[5ω4 + 2(σ 2
3 + σ 2

4)ω
2 + σ 2

3σ
2
4]

+4[4ω4 + 2(σ 2
2 + σ 2

4)ω
2 + σ 2

2σ
2
4] + 4[4ω4 + 2(σ 2

1 + σ 2
4)ω

2 + σ 2
1σ

2
4]

+4[−4ω4 − 2ω2σ 2
4] + 4[0] + 4[0]

+8[−2ω4 − ω2σ 2
4] + 8[0] + 8[−2ω4 − ω2σ 2

4]

= 12ω4 + 8ω2(σ 2
1 + σ 2

2 + σ 2
3 + σ 2

4)+ σ 2
4(4σ

2
1 + 4σ 2

2 + 4σ 2
3 + 2σ 2

4),

and the general result follows by the correlation structureof xi, j . Next, we note that

cov(z1, z2) = cov(x1,0, x2,0 + 2x1,1) = [2ω4] + 2[−2(σ 2
1 + 2ω2)ω2] = −6ω4 − 4ω2σ 2

1,

cov(z2, z3) = cov(x2,0 + 2x1,1, x3,0 + 2x2,1 + 2x1,2)

= [2ω4] + 2[−2(σ 2
2 + 2ω2)ω2] + 2[2ω4] + 2[0] + 4[ω4] + 4[−(σ 2

1 + 2ω2)ω2]

= −6ω4 − 4ω2(σ 2
1 + σ 2

2),

and the general result follows by induction. The higher order covariance are verified to be zero from

the correlation structure ofxi, j .

Lemma A.4. Given the assumptions of Theorem 2, it holds that

cov(γ̂ 0, z1) = 10ω4 + 8ω2σ 2
1 + 2σ 4

1

cov(γ̂ 0, z2) = −4ω4 + 4ω2(σ 2
2 − σ 2

1)+ 2σ 4
2

cov(γ̂ 0, zj ) = 4ω2(σ 2
j − σ 2

j −1)+ 2σ 4
j for j ≥ 3
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and in general we have for i≥ 1 that

cov(γ̂ i , zi−1) = 0,

cov(γ̂ i , zi ) = −2ω4 − 2ω2σ 2
1, for i ≥ 2 cov(γ̂ 1, z1) = −4ω4 − 2ω2σ 2

1

cov(γ̂ i , zi+1) = 4ω4 + 4ω2σ 2
1 + 2ω2(σ 2

i+1 − σ 2
2) + 2σ 2

1σ
2
i+1,

cov(γ̂ i , zi+2) = −2ω4 + 2ω2[(σ 2
2 − σ 2

1)− (σ 2
3 − σ 2

2)] + 2σ 2
2σ

2
i+2,

cov(γ̂ i , zi+ j ) = 2ω2[(σ 2
j − σ 2

j −1)− (σ 2
j +1 − σ 2

j )] + 2σ 2
jσ

2
i+ j , for j ≥ 3.

Proof. The structure follows from the correlation structure ofxi, j .

γ̂ 0 x1,0 x2,0 x1,1 x3,0 x2,1 x1,2 x4,0 x3,1 x2,2 x1,3 x5,0 x4,1 x3,2 x2,3 x1,4

x1,0 8 2 −4

x2,0 2 8 −4 2 −4 2

x3,0 2 8 −4 2 −4 2

x4,0 2 8 −4 2 −4 2

x5,0 2 8 −4

x6,0 2

x7,0

The table above identify the non-zero correlations, where the multiple of theω4-term is given,

whereas the other two terms (involvingω2σ 2
i andσ 2

i σ
2
j ) are given from Lemma A.1. Sincêγ 0 =

∑
xi,0 we find by the definition ofzi , that

cov(γ̂ 0, z1) = [8ω4 + 8ω2σ 2
1 + 2σ 4

1] + [2ω4] = 10ω4 + 8ω2σ 2
1 + 2σ 4

1,

cov(γ̂ 0, z2) = [2ω4] + [8ω4 + 8ω2σ 2
2 + 2σ 4

2] + [2ω4]

+2[−4ω4 − 2ω2σ 2
1] + 2[−4ω4 − 2ω2σ 2

2]

= −4ω4 + 4ω2(σ 2
2 − σ 2

1)+ 2σ 4
2,

cov(γ̂ 0, z3) = [2ω4] + [8ω4 + 8ω2σ 2
3 + 2σ 4

3] + [2ω4]

+2[−4ω4 − 2ω2σ 2
2] + 2[−4ω4 − 2ω2σ 2

3] + 2[2ω2]

= 4ω2(σ 2
3 − σ 2

2)+ 2σ 4
3.
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γ̂ 1 x1,0 x2,0 x1,1 x3,0 x2,1 x1,2 x4,0 x3,1 x2,2 x1,3 x5,0 x4,1 x3,2 x2,3 x1,4

x1,1 −4 −4 5 1 −2

x2,1 −4 1 −4 5 −2 1 −2 1

x3,1 −4 1 −4 5 −2 1 −2 1

x4,1 −4 1 −4 5 −2

x5,1 −4 1

x6,1

Sinceγ̂ 1 =
∑

xi,1 it follows that

cov(γ̂ 1, z1) = −4ω4 − 2ω2σ 2
1,

cov(γ̂ 1, z2) = [−4ω4 − 2ω2σ 2
2] + [−4ω4 − 2ω2σ 2

2]

+2[5ω4 + 2ω2(σ 2
1 + σ 2

2)+ σ 2
1σ

2
2] + 2[ω2]

= 4ω4 + 4ω2σ 2
1 + 2σ 2

1σ
2
2,

cov(γ̂ 1, z3) = [−4ω4 − 2ω2σ 2
3] + [−4ω4 − 2ω2σ 2

3]

+2[ω4] + 2[5ω4 + 2(σ 2
2 + σ 2

3)+ σ 2
2σ

2
3] + 2[ω2]

+2[−2ω4 − ω2σ 2
1] + 2[−2ω4 − ω2σ 2

3]

= −2ω4 + 2ω2[(σ 2
2 − σ 2

1)− (σ 2
3 − σ 2

2)] + 2σ 2
2σ

2
3,

cov(γ̂ 1, z1+ j ) = 2ω2[(σ 2
j − σ 2

j −1)− (σ 2
j +1 − σ 2

j )] + 2σ 2
j σ

2
i+ j .

γ̂ 2 x1,0 x2,0 x1,1 x3,0 x2,1 x1,2 x4,0 x3,1 x2,2 x1,3 x5,0 x4,1 x3,2 x2,3 x1,4

x1,2 2 −2 −2 4 1 −2

x2,2 2 −2 1 −2 4 −2 1 −2 1

x3,2 2 −2 1 −2 4 −2

x4,2 2 −2 1

x5,2

Sinceγ̂ 2 =
∑

xi,2 it now follows that

cov(γ̂ 2, z1) = 0,

cov(γ̂ 2, z2) = [2ω4] + 2[−2ω4 − ω2σ 2
1] = −2ω4 − 2ω2σ 2

1,

cov(γ̂ 2, z3) = [2ω4] + 2[−2ω4 − ω2σ 2
3] + 2[−2ω4 − ω2σ 2

2]

+2[4ω4 + 2ω2(σ 2
1 + σ 2

3)+ σ 2
1σ

2
3] + 2[ω2]

= 4ω4 + 4ω2σ 2
1 + 2ω2(σ 2

3 − σ 2
2)+ 2σ 2

1σ
2
3,
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cov(γ̂ 2, z4) = [2ω4] + 2[−2ω4 − ω2σ 2
4] + 2[−2ω4 − ω2σ 2

3] + 2[ω4]

+2[4ω4 + 2ω2(σ 2
2 + σ 2

4)+ σ 2
2σ

2
4] + 2[ω2]

+2[−2ω4 − ω2σ 2
1] + 2[−2ω4 − ω2σ 2

4]

= −2ω4 + 2ω2[(σ 2
2 − σ 2

1)− (σ 2
3 − σ 2

2)] + 2σ 2
2σ

2
4,

cov(γ̂ 2, z2+ j ) = +2ω2[(σ 2
j − σ 2

j −1)− (σ 2
j +1 − σ 2

j )] + 2σ 2
j σ

2
i+ j

Next we omit thexh,0-columns as these correlations are all zero.

γ̂ 3 x1,1 x2,1 x1,2 x3,1 x2,2 x1,3 x4,1 x3,2 x2,3 x1,4 x5,1 x4,2 x3,3 x2,4 x1,5

x1,3 1 −2 −2 4 1 −2

x2,3 1 −2 1 −2 4 −2 1 −2 1

x3,3 1 −2 1 −2 4 −2

x4,3 1 −2 1

x5,3

Sinceγ̂ 3 =
∑

xi,3 it now follows that

cov(γ̂ 3, z1) = cov(γ̂ 3, z2) = 0,

cov(γ̂ 3, z3) = 2[ω4] + 2[−2ω4 − ω2σ 2
1] = −2ω4 − 2ω2σ 2

1,

cov(γ̂ 3, z4) = 2[ω4] + 2[−2ω4 − ω2σ 2
4] + 2[−2ω4 − ω2σ 2

2]

+2[4ω4 + 2ω2(σ 2
1 + σ 2

4)+ σ 2
1σ

2
4] + 2[ω2]

= 4ω4 + 4ω2σ 2
1 + 2ω2(σ 2

4 − σ 2
2)+ 2σ 2

1σ
2
4,

cov(γ̂ 3, z5) = 2[ω4] + 2[−2ω4 − ω2σ 2
5] + 2[−2ω4 − ω2σ 2

3] + 2[ω4]

2[4ω4 + 2ω2(σ 2
2 + σ 2

5)+ σ 2
2σ

2
5] + 2[ω2]

+2[−2ω4 − ω2σ 2
1] + 2[−2ω4 − ω2σ 2

5]

= −2ω4 + 2ω2[(σ 2
2 − σ 2

1)− (σ 2
3 − σ 2

2)] + 2σ 2
2σ

2
5,

cov(γ̂ 3, z3+ j ) = +2ω2[(σ 2
j − σ 2

j −1)− (σ 2
j +1 − σ 2

j )] + 2σ 2
j σ

2
i+ j

Results forγ̂ i , i ≥ 4 follows similarly.

Proof of Lemma A.5. First note thatE(y1 + · · · + yk−1) = 2ω2 +
∑k−1

i=1 σ
2
i , such that

E(rk) = E(rk−1)+
k−1∑

i=1

(σ 2
i + σ 2

m+1−i )+ 4ω2, E(r1) = 0,

which proves the first result. In the constant-volatility case the expression simplifies to

E(rk) = 2(1 + 2 + · · · + k − 1)
σ 2

m
+ (k − 1)4ω2 = k(k − 1)

σ 2

m
+ (k − 1)4ω2.
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To establish the results for the variance and covariance, itis convenient to definezj ≡ x j ,0 +

2
∑ j −1

i=1 x j −i,i for j = 1,2, . . . So z1 = x1,0, z2 = x2,0 + 2x1,1, z3 = x3,0 + 2x2,1 + 2x1,2, etc.

Similarly, we definẽz1 ≡ xm,0, z̃2 ≡ xm−1,0 + 2xm−2,1, etc.

From calculations, such as

y2
1 + (y1 + y2)

2 + (y1 + y2 + y3)
2 = 3y2

1 + 2(y2
2 + 2y1y2)+ (y2

3 + 2y2y3 + 2y1y3)

= 3x1,0 + 2(x2,0 + 2x1,1)+ (x3,0 + 2x2,1 + 2x1,2)

= 3z1 + 2z2 + z3,

it follows that

1
krk = 1

k

k−1∑

j =1

(k − j )zj + 1
k

k−1∑

j =1

(k − j )z̃j .

From Lemma A.3 it follows that

var




k−1∑

j =1

k− j
k zj


 =

k−1∑

j =1

(
k− j

k

)2
var

(
zj

)
+ 2

k−1∑

j =1

k− j
k

k− j −1
k cov

(
zj , zj +1

)

=
k−1∑

j =1

k− j
k

[
k− j

k var
(
zj

)
+ k− j −1

k 2cov
(
zj , zj +1

)]

=
k−1∑

j =1

k− j
k

[
k− j

k − k− j −1
k

]
12ω4 − k−1

k 4ω4

+
k−1∑

j =1

k− j
k

[
k− j

k − k− j −1
k

]
8ω2(σ 2

1 + · · · + σ 2
j )

+
k−1∑

j =1

(
k− j

k

)2
σ 2

j (4σ
2
1 + · · · + 4σ 2

j −1 + 2σ 2
j ).

Since
k∑

j =1

k− j
k

1
k = 1

2
k−1

k ,

k∑

j =1

k− j
k

1
k

j
m = 1

6
k−1

k
k+1
m = O( k

m), and

k∑

j =1

k− j
k

k− j
k

j
m2 = 1

12
k2−1
m2 = O( k2

m2 ),

and(σ 2
1+· · ·+σ 2

j ) = O( j
m) and thatσ 2

j (4σ
2
1+· · ·+4σ 2

j −1+2σ 2
j ) = O( j

m2 ) under our assumptions,

we find that
k−1∑

j =1

k− j
k

[
k− j

k − k− j −1
k

]
12ω4 − k−1

k 4ω4 = (6 − 4) k−1
k ω

4 = 2k−1
k ω

4,
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k−1∑

j =1

k− j
k

[
k− j

k − k− j −1
k

]
8ω2(σ 2

1 + · · · + σ 2
j ) = O( k

m), and

k−1∑

j =1

(
k− j

k

)2
σ 2

j (4σ
2
1 + · · · + 4σ 2

j −1 + 2σ 2
j ) = O( k2

m2 ),

which shows that var(
∑k−1

j =1
k− j

k zj ) = 2k−1
k ω

4 + O( k
m). Finally, by adding the contributions from

the term
∑k−1

j =1
k− j

k z̃j that are derived in the same manner, and using thatzi andz̃j are uncorrelated

for i, j < m/2, the result for var(1
krk) follows.

Next, we consider the covariance betweenrk and γ̂ i , for i = 0,1, . . . From Lemma A.4 it

follows that

cov(γ̂ 0,
1
krk)

(1)= k−1
k cov(γ̂ 0, z1 + z̃1)+ k−2

k cov(γ̂ 0, z2 + z̃2)+ 0

= 2ω4( k−1
k 10− k−2

k
k
m) = 2ω4(6k−1

k + 4
k ) = 2ω4(6k−1+4/6

k ) = 12ω4(
k−1/3

k ).

For the remaining elements of̂
 that involveγ̂ h + γ̂−h = 2
∑m−h

i=1 xi,h, we find similarly that

cov(γ̂ 1 + γ̂−1,
1
krk)

(1)= 2 · 2
[
− k−1

k 4 + k−2
k 4 − k−3

k 2
]

= −8k−1
k ,

whereas

cov(γ̂ h + γ̂−h,
1
krk)

(1)= 4
[
− k−h

k 2 + k−h−1
k 4 − k−h−2

k 2
]

= 0, for h ≥ 2.

This completes the proof.

B.1. The Bias of the Subsample Estimator

Lemma A.5. Given(N) and(V) it holds that

E(rk) =
k−1∑

h=1

h(σ 2
h + σ 2

m+1−h)+ 4(k − 1)ω2,

var(1
krk) = 4k−1

k ω
4 + O( k

m),

cov(1
krk, 
̂ ′)

(1)= ω4(12k−1/3
k ,−8k−1

k ,0, . . . ,0).

Here we have used
(1)= to denote equality in terms of theω4-terms, while other terms that involve

σ 2
i,m andσ 4

i,m are omitted as these areO(m−1) andO(m−2), respectively.

Lemma A.5 shows that

var(RVsubk) = var(RVwsubk
− 1

krk)

(1)= 4ω4 + 4k−1
k ω

4 − 2cov(1
krk, 
̂′)w
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→ 4ω4 + 4ω4 − 2(12ω4 − 8ω4) = 0 ask,m → ∞,

confirming thatRVsubk is consistent whereas the Bartlett type estimator is inconsistent.

Another result that follows from Lemma A.5 is that the bias ofRVsubk is given by

bias(RVsubk) = (1 − m−k+1
mk − 1)IV + (1 − m−k+1

mk − m−1
m

k−1
k )2ω

2m − 1
k E(rk)

= −m−k+1
mk IV − 1

k

k−1∑

h=1

h(σ 2
h + σ 2

m+1−h), (A.7)

which can be verified to be of orderO(m+k2

mk ). Thus bias(RVsubk) = o(1) if k/m = o(1) ask,m →

∞.

With Theorem 8 in place it is now simple to determine the number of subsamples that minimizes

the mean squared error (MSE).

Corollary A.6. Given the assumptions of Theorem 8, it holds that

bias(RVsubq) = w′
subq E(
̃) = −m+(q−1)2

mq IV, (A.8)

such that mean squared error of RVsubq is given by

MSE(RVsubq)/IV
2 = w̃′

subq6̃
q
λ w̃subq + [ m+(q−1)2

mq ]2,

where6̃q
λ ≡ 6

q
λ + Ãqλ

2 + B̃qλ + C̃q
1
m, 6

q
λ is the upper left q× q submatrix of6λ, and w̃subq =

(1 − m−q+1
mq ,

q−1
q ,

q−2
q , . . . , 1

q ).

We observe that (A.8) is equivalent to (A.7) given(T ′).

C. Proof of Results of Section 5

Proof of Theorem 8.

By the independence ofzi andz̃i we have fori, j ≥ 1 that,

cov(γ̃ 0,2γ̃ i ) = cov(γ̂ 0,2γ̂ i )− cov(γ̂ 0, zi + z̃i )

a= cov(γ̂ 0,2γ̂ i )− 2cov(γ̂ 0, zi ),

var(2γ̃ i ) = var(2γ̂ i )+ var(zi + z̃i )− 2cov(2γ̂ i , zi + z̃i )

a= var(2γ̂ i )+ 2var(zi )− 8cov(γ̂ i , zi ),

cov(2γ̃ i ,2γ̃ j ) = cov(2γ̂ i ,2γ̂ j )+ cov(zi + z̃i , zj + z̃j )− cov(2γ̂ i , zj + z̃j )− cov(zi + z̃i ,2γ̂ j )

a= cov(2γ̂ i ,2γ̂ j )+ 2cov(zi , zj )− 4cov(γ̂ i , zj )− 4cov(zi , γ̂ j ),
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where
a= refers to equality under the assumption thatσ 2

i = σ 2
j for all i, j , in which case the contri-

butions fromzi andz̃i are identical.

Thus, the elements of̃Aω4 + B̃ω2σ 2 + C̃σ 4 1
m are given as follows.

[0,1] = −2cov(γ̂ 0, z1) = −20ω4 − 16ω2σ 2/m − 4σ 4/m2,

[0,2] = −2cov(γ̂ 0, z2) = +8ω4 + 0 − 4σ 4/m2,

[0, i ] = −2cov(γ̂ 0, zi ) = −4σ 4/m2, for i ≥ 2,

[1,1] = 2var(z1)− 8cov(γ̂ 1, z1)

= 2[8ω4 + 8ω2σ 2/m + 2σ 4/m2] − 8[−4ω4 − 2ω2σ 2/m]

= 48ω4 + 32ω2σ 2/m + 4σ 4/m2,

and more generally fori ≥ 1 we have

[i, i + 1] = 2cov(zi , zi+1)− 4cov(γ̂ i , zi+1)− 4cov(zi , γ̂ i+1)

= 2[−6ω4 − 4iω2σ 2/m] − 4[4ω4 + 4ω2σ 2/m + 2σ 4/m2] − 4[0]

= −28ω4 − 8(i + 2)ω2σ 2/m − 8σ 4/m2,

[i, i + 2] = 2cov(zi , zi+2)− 4cov(γ̂ i , zi+2)− 4cov(zi , γ̂ i+2)

= 2[0] − 4[−2ω4 + 2σ 4/m2] − 4[0] = 8ω4 − 8σ 4/m2,

[i, i + j ] = 2cov(zi , zi+ j )− 4cov(γ̂ i , zi+ j )− 4cov(zi , γ̂ i+ j )

= 2[0] − 4[2σ 4/m2] − 4[0] = −8σ 4/m2, for j ≥ 3.

Further, fori ≥ 2 we find that

[i, i ] = 2var(zi )− 8cov(γ̂ i , zi )

= 2[12ω4 + 8ω2iω2σ 2/m + 4(i − 1
2)σ

4/m2] − 8[−2ω4 − 2ω2σ 2/m]

= 40ω4 + 16(i + 1)ω2σ 2/m + 8(i − 1
2)σ

4/m2.

C.1. Ancillary Regressions

Our analytical (matrix) expressions for var(w′
̂) and var(w̃′
̃) do not reveal their dependence onm

in closed form. However, this dependence can be determined numerically by ancillary regressions.

For the regular kernel estimator we found that var(w∗′
λ 
̂) → 4ω4 asm → ∞, and the rate at

which the variance converges to the lower bound can be determined from the ancillary regression

log(w∗′
λ6�w∗

λ − 4λ2) = α + β logm + εm, for m = mmin, . . . ,mmax.
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Similarly for the modified kernel estimator and the subsampling estimator where log(w̃∗′
λ 6̃

q
λ w̃∗

λ) and

log(w̃′
subq∗ 6̃

q
λ w̃subq∗ ) are the relevant dependent variables. For the latterq∗ = q∗(λ,m) denotes the

number of subsamples that minimized the variance.

1. LetYmi = log(w∗′
λ6�w∗

λ−4λ2), log(w̃∗′
λ 6̃

q
λ w̃∗

λ) (using truncation 4
√

m) or log(w̃′
subq∗ 6̃

q
λ w̃subq∗ )

(using optimalq).

Form = 103, 104, 105, 106, run the regressions:

Ymi = αm + βm logmi + εmi , for mi = 1
4m, 1

2m,m,2m,4m,

which yields(α̂m, β̂m).

2. By imposingβ = −1/2 (orβ = −1/3) reestimateαm by

α̂m = 1

5

5∑

i=1

(Ymi − β logmi ),

TABLE 1 ABOUT HERE

Ancillary Regression Results:

One Panels for each ofRVw∗
λ

RVw̃∗
λ

RVsubq∗ .

Table 1 shows thatm1/4(w̃∗′
λ 
̃ − IV) has an asymptotic variance that equals exp(α̂∞)IV2 under

(T ′). The results in the table is consistent with Zhang et al. (2004) who show that the subsampling

estimator converges at the slower ratem1/6, which corresponds toβ∞ = −1/3
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Table 1: Ancillary Regression Results.

Panel A: Regular Kernel

λ = 0.1 λ = 0.01 λ = 0.001

m α̂m β̂m α̂
rest
m α̂m β̂m α̂

rest
m α̂m β̂m α̂

rest
m

103 1.276 -0.515 1.175 0.244 -0.551 -0.108 0.217 -0.679 -1.019
104 1.237 -0.509 1.166 0.112 -0.532 -0.143 -0.242 -0.612 -1.146
105 1.215 -0.506 1.161 0.028 -0.521 -0.162 -0.541 -0.573 -1.212
106 1.200 -0.504 1.157 -0.026 -0.514 -0.173 -0.733 -0.550 -1.250

Panel B: Modified Kernel

λ = 0.1 λ = 0.01 λ = 0.001

m α̂m β̂m α̂
rest
m α̂m β̂m α̂

rest
m α̂m β̂m α̂

rest
m

103 0.998 -0.495 1.031 0.141 -0.541 -0.142 0.185 -0.675 -1.027
104 1.005 -0.496 1.037 0.033 -0.525 -0.170 -0.265 -0.610 -1.151
105 1.016 -0.497 1.039 -0.034 -0.516 -0.185 -0.558 -0.571 -1.216
106 1.022 -0.498 1.040 -0.077 -0.511 -0.194 -0.747 -0.549 -1.253

Panel C: Subsample Estimator

λ = 0.1 λ = 0.01 λ = 0.001

m α̂m β̂m α̂
rest
m α̂m β̂m α̂

rest
m α̂m β̂m α̂

rest
m

103 0.366 -0.371 0.105 -0.101 -0.481 -1.124 0.146 -0.658-2.099
104 0.297 -0.361 0.073 -0.398 -0.438 -1.243 -0.455 -0.571-2.371
105 0.242 -0.354 0.052 -0.621 -0.409 -1.318 -0.939 -0.508-2.544
106

The Table presents results from the local ancillary regressions that reveal the estimators rates of convergence.
The local regressions are each based on five data points,mi = m/4,m/2,m,2m, and 4m, where m is listed
in the first column.̂αm andβ̂m are the unrestricted estimates andα̂rest

m is the estimate ofαm whenβm is fixed
at−1/2 (Panels A and B) or−1/3 (Panel C).
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Figure 1: Plot ofw∗, the optimal weight. The number of observations,m, equals 78 in the top plot, 390 in the
middle ,and in the bottom plotm equals 1560.λ = ω2/σ 2 is set to be 0.01 and 0.001 in each subplot.
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Figure 2: Plot ofw∗
λ, the optimal modified weight. The number of observations,m, equals 78 in the top plot,

390 in the middle ,and in the bottom plotm equals 1560.λ = ω2/σ 2 is set to be 0.01 and 0.001 in each
subplot.
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∗
λ, w̃∗′
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Figure 4: MSE of regular and modified kernel estimate of RV at true values ofλ.
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Figure 5: Regular Kernel RV: MSE at true values ofλ relative to MSE at two-step and oo-step.
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Figure 6: Modified Kernel RV: MSE at true values ofλ relative to MSE at two-step and oo-step.
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