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Abstract

This paper considers the nonparametric identification and estimation of the average effect
of a dummy endogenous variable in nonseparable models. The analysis includes the case
of a dummy endogenous variable in a discrete choice model as a special case. This paper
establishes conditions under which it is possible to identify and consistently estimate the
average effect of the dummy endogenous variable without the use of large support conditions
and without relying on parametric functional form or distributional assumptions. A root-N
consistent and asymptotically normal estimator is developed for a special case of the model.
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1 Introduction

This paper considers dummy endogenous variables in models where the error term is not additively
separable from the regressors. The paper shows conditions for identification and estimation of the
average effect of the dummy endogenous variable without imposing large support assumptions as
are required by “identification-at-infinity” arguments, and without imposing parametric functional
form or distributional assumptions.

An important special case of this analysis is to examine the effect of a dummy endogenous
variable in a discrete choice model. For example, if a researcher wishes to examine the effect
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of a job training program on later employment, he or she might specify a probit equation for
employment and include a dummy variable regressor for whether the individual received job
training. One might expect that job training is endogenous, in particular, is correlated with
the error term in the employment decision rule. In the discrete choice model, the error term is
not additively separable from the regressors and thus standard instrumental variable techniques
are not valid even if one has a variable that is correlated with job training but not with the
error term of the employment equation.1 Following Heckman (1978), one can impose a system of
equations for the joint determination of the endogenous variable (job training) and the outcome
variable (later employment). Heckman (1978) imposes joint normality assumptions and develops
the maximum likelihood estimator for the resulting model. The model has a form similar to a
multivariate probit model, and is referred to as a “multivariate probit model with structural shift”
by Heckman (1978).2

This raises the question of whether it is possible to identify and consistently estimate the effect
of a dummy endogenous variable in nonseparable outcome equations such as discrete choice models
without imposing parametric distributional assumptions. One approach is to follow the analysis
of Heckman (1990a,b) to use “identification-at-infinity” arguments to identify and estimate the
average effect of the dummy endogenous variable on the outcome of interest if large support
conditions hold. In particular, this approach assumes that the propensity score has support equal
to the full unit interval, where the propensity score is the probability of receiving treatment
conditional on observed covariates.3 The drawbacks of this method is that it requires very strong,
large support conditions, and that estimation that directly follows the identification strategy
involves estimation on “thin sets” and thus a slow rate of convergence.4 Angrist (2001) suggests
that, if large support conditions do not hold, then the average effect of the dummy endogenous
variable in nonseparable models is identified only through distributional assumptions.5 Angrist
(1991, 2001) proposes treating the outcome equation as a linear equation as an approximation,6

or using instrumental variables to identify the “local average treatment effect.”7

1See, e.g., the discussion in Heckman and Robb, 1985.
2A closely related model is the simultaneous probit model of Amemiya (1978), in which a probit model contains

a continuous endogenous regressor. Later analysis of this model includes Lee (1981), Rivers and Vuong (1988),
and Newey (1986). See Blundell and Powell (2000) for analysis of a semiparametric version of this model. The
assumptions and methods used by Blundell and Powell (2000) are not appropriate for the case of a dummy
endogenous variable, and likewise the assumptions and methods imposed here are not appropriate for the case of
a continuous endogenous variable.

3Heckman (1990a,b) assumed that the outcome equation is additively separable in the regressors and the error
term, but his analysis extends immediately to the nonseparable case. See also Cameron and Heckman (1998) and
Heckman and Taber (1998) for identification-at-infinity arguments in the context of a system of discrete choice
equations. Heckman and Vytlacil (1991,2001a) also further develop relevant identification-at-infinity arguments.

4See Andrews and Schafgans (1998), Schafgans (2000), and Schafgans and Zinde-Walsh (200) for results for the
additively separable model.

5Angrist (2000) states one exception to this rule, that average effect will be identified if one imposes conditions
such that average effect coincides with the local average treatment effect (LATE). This paper does not impose any
such conditions.

6See Bhattacharya, et al., 1999, for a related Monte Carlo analysis.
7The “local average treatment effect” (LATE) was introduced in Imbens and Angrist, 1994. Under their
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Heckman and Vytlacil (2001b) establish that the large support assumption invoked for identification-
at-infinity arguments is necessary and sufficient for identification of the average effect of the
dummy endogenous variable in the case of a switching regression model if no auxiliary assump-
tions are imposed. However, the Heckman and Vytlacil (2001b) result is for switching regression
models, which leaves open the possibility of avoiding large support assumptions in nonseparable
models that are not of the form of switching regression models.

This paper shows that it is possible to identify and estimate the average effect of a dummy
endogenous variable in a nonseparable outcome equation (a) without imposing large support
conditions, and (b) without relying on parametric distributional or functional form assumptions.
This result holds in the a large class of nonseparable models referred to as “generalized regression”
models by Han (1987), and includes both threshold crossing models as used in discrete choice
analysis and transformation models such as the Box-Cox model and the proportional hazards
model with unobserved heterogeneity. A root-N consistent and asymptotically normal estimator
is developed for a special case of the model.

Other work that considers endogenous regressors in semiparametric or nonparametric nonsep-
arable models includes Altonji and Matzkin (1997), Altonji and Ichimura (1998), Blundell and
Powell (1999), and Imbens and Newey (2001).8 Blundell and Powell (1999) and Imbens and Newey
(2001) consider estimation of the average partial effect of a continuous endogenous regressor in
nonseparable models, but their identification strategies are not appropriate for a discrete endoge-
nous regressor as considered in this paper. Altonji and Ichimura (1998) consider estimation of the
average derivatives of a general class of nonseparable outcome equations with tobit-type censoring
of the outcome, but do not consider the effect of an endogenous binary regressor. Altonji and
Matzkin (1997) allow for endogenous regressors in a panel data model with exchangeability. See
Blundell and Powell (2000) for a survey of this literature.

conditions, instrumental variables will consistently estimate LATE even though it will not consistently estimate
the average effect of the variable. See Heckman and Vytlacil (2000) for the relationship between the LATE
parameter and other mean treatment parameters including the average treatment effect, and see Vytlacil (2002)
for the connection between the assumptions imposed in Imbens and Angrist (1994) and the nonparametric selection
model. Another alternative is to use the instrumental variables assumption to bound the average treatment effect.
See Robins (1989) and Balke and Pearl (1997) for bounds that exploit a statistical independence version of the
instrumental variables assumption, and see Manski (1990, 1994) for bounds that exploit a mean independence
version of the instrumental variables assumption. See Manski and Pepper (2000) and Heckman and Vytlacil
(2001a) for bounds that combine an instrumental variables assumption with additional restrictions.

8Work on nonseparable models with exogenous regressors includes Matzkin (1991, 1992, 1993, 1999). There
is also a large literature on identification and estimation of the slope parameters of binary choice models without
parametric distributional assumptions and while relaxing the independence of the error terms and the regressors
to a weaker condition such as median independence (see, e.g., Manski 1975, 1988). This literature recovers the
slope parameters of the binary choice models but not the error distribution, and thus cannot answer questions
related to the average effect of one of the regressors on the outcome variable.
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2 Model:

For any random variable A, let a denote a realization of A, let FA denote the distribution of A,
and let Supp(A) denote the support of A. Let Y denote the outcome variable of interest and D
denote the binary endogenous variable of interest. Following Heckman (1978), consider

Y ∗ = Xβ + αD + ε

D∗ = Zγ + U

Y = 1[Y ∗ ≥ 0]

D = 1[D∗ ≥ 0]

where (X,Z) is an observed random vector, (ε, U) is an unobserved random vector, 1[·] is the
indicator function, (X,Z) ⊥⊥ (ε, U), and (ε, U) is normally distributed. Heckman (1978) refers to
a model of this form as a multivariate probit model with a structural shift. In this model, the
average effect of D on Y given covariates X is Fε(Xβ + α)− Fε(Xβ). Heckman (1978) develops
the maximum likelihood estimator for the model.

This paper examines the more general model where one does not impose parametric distribu-
tion assumptions on the error terms, does not impose linear index assumptions, and is for a more
general class of outcome equations that include the above threshold crossing model as a special
case. In particular, we assume that Y and D are determined by:

Y = g(ν(X,D), ε) (1)

D = 1[ϑ(Z)− U ≥ 0] (2)

where (X, Z) ∈ <KX × <KZ is a random vector of other observed covariates, (ε, U) ∈ <2 are
unobserved random variables, g : <2 7→ <, and ν(·, ·) : <KX × {0, 1} 7→ <. We are assuming that
ε is a scalar random variable for simplicity, the analysis can be directly extended to allow ε to
be a random element.9 We will assume that (X,Z) is exogenous, in particular, that (X, Z) ⊥⊥
(ε, U). This system of equations includes the classical case discussed above by taking ϑ(Z) = Zδ,
ν(X, D) = Xβ + αD, g(t, ε) = 1[t + ε ≥ 0], and (ε, U) distributed joint normal. In the following
analysis, the functions ν and g need not be known and no parametric distributional assumption
will be imposed on (ε, U).

The form of the outcome equation for Y is referred to as a generalized regression model by
Han (1987), who considered the estimation of ν(·) when ν(·) is known up to a finite dimensional
parameter vector and all regressors are exogenous.10 This form of the outcome equation for Y
imposes that (X, D) is weakly separable from ε. This weak separability restriction will be critical

9See Altonji and Ichimura (1998) for related analysis that allows the error term to be a random element. I
would like to thank Hide Ichimura for suggesting this point to me.

10See also Matzkin (1991), who considers estimation of ν(·) when curvature restrictions but no parametric
assumptions are imposed on ν(·), and again all regressors are exogenous. Note that this paper differs from Han
(1987) and Matzkin (1991) both by allowing for the dummy endogenous variable and by defining the object of
interest to be the average effect of the endogenous variable and not recovery of the ν function.
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to the following analysis, and makes the model more restrictive than the Roy-model/switching
regression framework considered in Heckman (1990a,b). The purpose of this paper is to exploit this
weak separability condition to by-pass the identification-at-infinity arguments for identification
and estimation which are required for nonparametric switching regression models.11 However, the
results in this paper will directly extend to the switching regression model of Y = g(ν(X, D), εD)
with εD = Dε1 + (1−D)ε0, if one restricts ε1 and ε0 to have the same distribution conditional on
U .

The model for D is a threshold-crossing model. Here, ϑ(Z) − U is interpreted as net utility
to the agent from choosing D = 1. Without loss of generality, assume that U ∼ Unif[0, 1] and
ϑ(z) = P (z), where P (z) = Pr(D = 1|Z = z). P (Z) is sometimes called the “propensity score”,
following Rosenbaum and Rubin (1983).

I will maintain the following assumptions:

(A-1) The distribution of (U, ε) is absolutely continuous with respect to Lebesgue measure on
<2;

(A-2) (U, ε) is independent of (Z,X);

(A-3) g(ν(X, 1), ε) and g(ν(X, 0), ε) have finite first moments;

(A-4) E(g(t, ε)|U = u) is strictly increasing in t for a.e. u;

(A-5) There exist sets S1
X,Z and S0

X,Z with the following properties, where Ij = 1[(X, Z) ∈ Sj
X,Z ],

(A-5-a) Pr[Ij = 1] > 0, j = 0, 1.

(A-5-b) Pr[0 < P (Z) < 1|Ij = 1] = 1

(A-5-c) P (Z) is nondegenerate conditional on (X, Ij = 1), j = 0, 1.

(A-5-d) Supp
[
(ν(X, 1), P (Z))

∣∣I1 = 1
] ⊆Supp

[
(ν(X, 0), P (Z))

]
,

Supp
[
(ν(X, 0), P (Z))

∣∣I0 = 1
] ⊆Supp

[
(ν(X, 1), P (Z))

]
.

Assumption (A-1) is a regularity condition imposed to guarantee smoothness of the relevant
conditional expectation functions. Assumption (A-2) is a critical independence condition, that
the observed covariates (besides for the treatment choice) are independent of the unobserved
covariates. Assumption (A-3) is a standard regularity condition required to have the parameter
of interest be well defined. We will strengthen (A-3) for estimation.

Assumption (A-4) is a monotonicity condition.12 It is important to note that (A-4) does
not require g to be strictly increasing in t, it does not impose any form of monotonicity of g
in ε, nor does it impose any form of monotonicity on the ν1, ν0 functions. One example of a

11Heckman and Vytlacil (2001b) prove that the large support conditions imposed in identification-at-infinity ar-
guments are necessary and sufficient for identification of the average treatment effect in general switching regression
models.

12The following analysis can be trivially extended to the case where E(g(t, ε)|U = u) is strictly decreasing in t
for a.e. u.
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model which will satisfy (A-4) is the transformation model, where g(t0, ε) = r(t0 + ε), and r is
a (possibly unknown) strictly increasing function. This model is referred to as a transformation
model, and includes as special cases the Box-Cox model and the proportional hazards model with
unobserved heterogeneity. Since r is strictly increasing, condition (A-4) is immediately satisfied.
However, (A-4) also allows for cases where g is not strictly monotonic in t. An important special
case is the threshold crossing models for a binary outcome variable, where g(t, ε) = 1(ε ≤ t) so
that E(g(t, ε)|U = u) = Pr(ε ≤ t|U = u). If Supp(ε, U) = < × [0, 1], then condition (A-4) is
immediately satisfied, even though g itself is not strictly increasing.

Let X j = {x : ∃ z s.t. (x, z) ∈ Sj
X,Z}, j = 0, 1. The analysis for will be done for

x ∈ X j. Condition (A-5-a) guarantees that these sets have positive probability. Condition (A-5-b)
guarantees there are both treated and untreated individuals with positive probability for (almost
every) realization of Z within the set. Assumption (A-5-c) requires an exclusion restriction: there
exists a variable that enters the decision rule for D but does not directly determine Y . Assumption
(A-5-d) is a support condition, which will be discussed at length later in this paper. As will be
shown in this paper, (A-5-d) has an empirical analog and it is possible to empirically determine
these sets even though they are defined in terms of the ν function.

Our goal is to identify and consistently estimate the average effect of D on Y . Using counter-
factual notation, let

Yd = g(ν(X, d), ε)

denote the outcome that would have been observed had an individual with observable vector X
and unobservable ε been randomly assigned the “treatment” d. In this case, for any measurable
set A ⊆ Supp(X), we can define the average outcome if all individuals with observed covariates
X ∈ A had been randomly assigned the treatment d = 1,

E(Y1|X ∈ A) = E(g(ν(X, 1), ε)|X ∈ A),

and the average outcome if all individuals with observed covariates X had been randomly assigned
the treatment d = 0,13

E(Y0|X ∈ A) = E(g(ν(X, 0), ε)|X ∈ A).

In this notation, the average effect of D = 1 versus D = 0 is14

E(Y1 − Y0|X ∈ A) = E(g(ν(X, 1), ε)− g(ν(X, 0), ε)|X ∈ A).

Within the treatment effect literature, E(Y1 − Y0|X ∈ A) is referred to as the average treatment
effect.15 Another parameter commonly studied in the treatment effect literature is the effect of

13Note that, since X is exogenous, the function φ(x, d) ≡ E(Yd|X = x) corresponds to the average structural
function as defined by Blundell and Powell (1999). From assumption (A-3), we have that E(Y1|X ∈ A) and
E(Y0|X ∈ A) exist and are finite for every set A such that Pr[X ∈ A] > 0.

14From assumption (A-3), it follows that E(Y1 − Y0|X ∈ A) exists and is finite for every measurable set A such
that Pr[X ∈ A] > 0.

15See Heckman and Vytlacil (2000) for a discussion of treatment parameters and the connections among them.
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treatment on the treated,16

E(Y1 − Y0|D = 1, (X, Z) ∈ B) = E(g(ν(x, 1), ε)− g(ν(x, 0), ε)|D = 1, (X, Z) ∈ B),

for any measurable set B ⊆ Supp(X, Z). This paper will include identification and estimation
results for E(Y0|X ∈ A), E(Y1|X ∈ A), the average treatment effect conditional on covariates,
E(Y1 − Y0|X ∈ A), and the effect of treatment on the treated conditional on covariates, E(Y1 −
Y0|(X,Z) ∈ B, D = 1).

3 Identification Analysis

In this section I assume that the distribution of (Y,D, X, Z) is known and consider identification
of the average effect of the dummy endogenous variable. In particular, I will show identification
conditions given that one knows the following functions over the support of (X,Z),17

Pr[D = 1|Z = z] = P (z)
E(DY |X = x, Z = z) = P (z)E(Y1|D = 1, X = x, Z = z)

E((1−D)Y |X = x, Z = z) = (1− P (z))E(Y0|D = 0, X = x, Z = z).
(3)

We wish to identify the average effect of D on Y given covariates, E(Y1 − Y0|X = x), and thus
need to identify E(Y1|X = x) and E(Y0|X = x). Using equation 1 and that Z is independent of
ε conditional on X, we have that Y1, Y0 are mean independent of Z conditional on X, E(Yj|X) =
E(Yj|X, Z), j = 0, 1. Thus, applying the law of iterated expectations, we have that

E(Y1|X = x) = P (z)E(Y1|D = 1, X = x, Z = z) + (1− P (z))E(Y1|D = 0, X = x, Z = z),

E(Y0|X = x) = P (z)E(Y0|D = 1, X = x, Z = z) + (1− P (z))E(Y0|D = 0, X = x, Z = z).

From equation (3), we identify the first term of the first equation and the second term of the
second equation but we do not immediately identify the other terms. My analysis will use the
model to identify these terms.

To see how the identification analysis will proceed, note that for any version of the conditional
expectations that is consistent with our model of equations (1)-(2) and assumptions (A-1)-(A-4),

E(Y1|X = x, Z = z, D = 1) = E(g(ν(x, 1), ε)|U ≤ P (z)) (4)

16From assumption (A-3), we have that E(Y1− Y0|D = 1, (X, Z) ∈ B) exists and is finite for all measurable sets
B such that Pr((X,Z) ∈ B) > 0.

17Throughout the identification section, a statement that a conditional expectation is identified or known is
used a shorthand for the more correct statement that the appropriate equivalence class of conditional expectation
functions is known. For example, the statement that the function P (z) = Pr[D = 1|Z = z] is known is a shorthand
for the statement that the FZ-equivalence class, [P ] := {q ∈ L1 : q = P a.e. FZ}, is known. In the estimation
section, smoothness conditions will be imposed which will imply that the conditional expectations are unique
subject to the smoothness conditions, but no such smoothness conditions are imposed here for identification.
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E(Y0|X = x, Z = z, D = 0) = E(g(ν(x, 0), ε)|U > P (z)), (5)

where we have substituted in the models for D and Y and are using the independence assumption
(A-2). The problem is to identify

E(Y0|X = x, Z = z, D = 1) = E(g(ν(x, 0), ε)|U ≤ P (z)), (6)

E(Y1|X = x, Z = z, D = 0) = E(g(ν(x, 1), ε)|U > P (z)). (7)

The central idea for the identification analysis is that if we can find shifts in X which directly
compensate for a shift in D, then we can use information from equation 4 to fill in the missing
information for equation 6, and from equation 5 to fill in the missing information for equation 7. In
particular, if we identify (x, x1) and (x0, x) pairs such that ν(x, 0) = ν(x1, 1) and ν(x, 1) = ν(x0, 0),
then evaluating equation 4 at x1 tells us the answer for evaluating equation 6 at x, and evaluating
equation 5 at x0 tells us the answer for evaluating equation 7 at x. Because of selection (D being
endogenous), we cannot immediately use the conditional expectations in the data to recover such
pairs. However, given our model and assumptions, we can use the variation in the conditional
expectations for changes in Z to identify such pairs. Given that equations 6 and 7 are identified
by this procedure, then (a version of) E(Y0|X = x), E(Y1|X = x) and thus E(Y1 − Y0|X = x)
will be identified if the appropriate support condition holds.

For the identification analysis, it will be convenient to work with expectations conditional
on P (Z) instead of conditional on Z. Note that, given our assumptions, we have that any
version of the conditional expectations that is consistent with our model of equations (1)-(2) and
assumptions (A2) and (A3) will satisfy the following index sufficiency restriction,

E(DY |X = x, Z = z) = E(DY |X = x, P (Z) = P (z)),
E((1−D)Y |X = x, Z = z) = E((1−D)Y |X = x, P (Z) = P (z)).

(8)

Define

h1(p0, p1, x) =
1

p1 − p0

[
E

(
DY

∣∣X = x, P (Z) = p1

)− E
(
DY

∣∣X = x, P (Z) = p0

)]

h0(p0, p1, x) = − 1

p1 − p0

[
E

(
(1−D)Y

∣∣X = x, P (Z) = p1

)− E
(
(1−D)Y

∣∣X = x, P (Z) = p0

)]
.

One can easily show that

h1(p0, p1, x)− h0(p0, p1, x) =
E(Y |X = x, P (Z) = p1)− E(Y |X = x, P (Z) = p0)

p1 − p0

.

This expression is the probability limit of the Wald IV estimator with P (Z) as the instrument
shifting from P (Z) = p0 to P (Z) = p1.

18 h1 and h0 individually have the form of the probability

18This is the form used by Heckman and Vytlacil (1999, 2001a) for the LATE parameter, building on Imbens
and Angrist (1994).
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limit of the Wald IV estimator applied to DY and (1−D)Y separately. Evaluating h1(p0, p1, x1)−
h0(p0, p1, x0) with x0 6= x1, the difference has a form similar to the Wald IV estimator but shifting
X and the instrument simultaneously. We will use the h1, h0 functions to uncover (x0, x1) pairs
such that ν(x1, 1) = ν(x0, 0).

Let sgn(t) denote the sign function, defined as follows:

sgn[t] =





1 if t > 0

0 if t = 0

−1 if t < 0.

We then have the following Lemma.

Lemma 3.1 Assume that (D,Y ) are generated according to equations (1)-(2). Assume conditions
(A-1)-(A-5). Then

sgn[h1(p0, p1, x1)− h0(p0, p1, x0)] = sgn[ν(x1, 1)− ν(x0, 0)].

Proof: See Appendix A.

We thus have that h1(p0, p1, x1) − h0(p0, p1, x0) = 0 implies ν(x1, 1) = ν(x0, 0). In other words,
if h1(p0, p1, x1) = h0(p0, p1, x0), then shifting X from x0 to x1 directly compensates for shifting
D from 0 to 1. Note that if h1(p0, p1, x1) − h0(p0, p1, x0) = 0 for some (p0, p1) evaluation points,
then h1(p0, p1, x1)− h0(p0, p1, x0) = 0 for all p0, p1 evaluation points. Let

h−1
1 h0(x0) = {x ∈ Supp(X) : ∃ p0, p1 such that h1(p0, p1, x) = h0(p0, p1, x0)}

h−1
0 h1(x1) = {x ∈ Supp(X) : ∃ p0, p1 such that h1(p0, p1, x1) = h0(p0, p1, x)}. (9)

From Lemma 3.1, we have that

x ∈ h−1
1 h0(x0) ⇒ ν(x, 1) = ν(x0, 0)

x ∈ h−1
0 h1(x1) ⇒ ν(x1, 1) = ν(x, 0).

There is a support condition required in order to be able to find such pairs – one needs to find
enough variation in X to compensate for a shift in D. Recall that X j = {x : ∃ z s.t. (x, z) ∈ Sj

X,Z},
j = 0, 1. From assumption (A-5-d), we have that, for any x ∈ X 1, there is enough variation in X
to compensate for a shift from D = 1 to D = 0. Likewise, for any x ∈ X 0, there is enough varia-
tion in X to compensate for a shift from D = 0 to D = 1. In particular, we have that h−1

1 h0(x0) is
nonempty for x0 ∈ X 0, and h−1

0 h1(x1) is nonempty for x1 ∈ X 1. We have the following theorem.

Theorem 3.1 Assume that (D, Y ) are generated according to equations (1)-(2). Assume condi-
tions (A-1)-(A-5). Assume that the distribution of (D, Y, X,Z) is known.
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1. For any A ⊂ X 0, E(Y0|X ∈ A) is identified and given by

E(Y0|X ∈ A) =

∫ [∫ (
E(DY |X ∈ h−1

1 h0(x), P = p)

+ E((1−D)Y |X = x, P = p)

)
dGP |X(p|x)

]
dFX|A(x)

where FX|A is the distribution function of X conditional on X ∈ A, and GP |X is any
distribution function that is absolutely continuous with respect to the distribution of P (Z)
conditional on X.

2. For any A ⊂ X 1, E(Y1|X ∈ A) is identified and given by

E(Y1|X ∈ A) =

∫ [∫ (
E(DY |X = x, P = p)

+ E((1−D)Y |X ∈ h−1
0 h1(x), P = p)

)
dGP |X(p|x)

]
dFX|A(x)

where FX|A is the distribution function of X conditional on X ∈ A, and GP |X is any
distribution function that is absolutely continuous with respect to the distribution of P (Z)
conditional on X.

3. For any A ⊂ S0
X,Z, E(Y1 − Y0|(X, Z) ∈ A, D = 1) is identified and given by

E(Y1 − Y0|X ∈ A, P (Z) = p,D = 1)

= E(Y |(X, Z) ∈ A, D = 1)−
∫

E(Y |X ∈ h−1
1 h0(x), Z = z,D = 1)dFX,Z|A(x, z)

where FX,Z|A is the distribution function of (X, Z) conditional on (X, Z) ∈ A.

4. For any A ∈ X 0
⋂X 1, E(Y1 − Y0|X ∈ A) is identified and given by

E(Y1 − Y0|X ∈ A) =

∫ [∫ (
E(DY |X = x, P = p) + E((1−D)Y |X ∈ h−1

0 h1(x), P = p)

− E(DY |X ∈ h−1
1 h0(x), P = p)− E((1−D)Y |X = x, P = p)

)
dGP |X(p|x)

]
dFX|X∈A(x)

where FX|A is the distribution function of X conditional on X ∈ A, and GP |X is any
distribution function that is absolutely continuous with respect to the distribution of P (Z)
conditional on X.

Proof: See Appendix A.
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The requirement that A ⊆ X j involves two types of support conditions. One is that there is
sufficient variation in P (Z) conditional on X for X ∈ A. This requires that there be an exclusion
restriction, a variable in Z that is not contained in X. The second, less standard type of support
condition is that it is possible to find variation in X that compensates for a change from D = 0
to D = 1. This support condition is likely to fail near the boundaries of the support of X, as
illustrated by the following example.

Illustrative Example: To illustrate the conditions of Theorem 1, take the special case
of a threshold-crossing model with linear indices. In particular, assume that the true data
generating process is:

Y = 1(ε ≤ Xβ + δD),

D = 1(V ≤ Zγ)

with (ε, V ) independent of (X,Z), having a distribution which is absolutely continuous with
respect to Lebesgue measure on <2, and having support <2. We can map the equation for
D into the form of equation 2 by taking U = FV (V ). We thus have

E(DY |X = x, P = p) = Pr(V ≤ F−1
V (p), ε ≤ xβ + δ),

E((1−D)Y |X = x, P = p) = Pr(V > F−1
V (p), ε ≤ x),

and thus

h1(p0, p1, x) = Pr(F−1
V (p0) < V ≤ F−1

V (p1), ε ≤ xβ + δ),

h0(p0, p1, x) = Pr(F−1
V (p0) < V ≤ F−1

V (p1), ε ≤ xβ).

Suppose that (X, Z) has support equal to the cross product of the support of X and the
support of Z, Supp(X, Z) = Supp(X)× Supp(Z). For simplicity, suppose that the support
of Xβ is an interval, Supp(Xβ) = [tL, tU ]. Then

h−1
1 h0(x0) = {x ∈ Supp(X) : (x0 − x)β = δ}

h−1
0 h1(x1) = {x ∈ Supp(X) : (x− x1)β = δ},

and

X 1 = {x ∈ Supp(X) : xβ + δ ∈ [tL, tU ]}
X 0 = {x ∈ Supp(X) : xβ ∈ [tL + δ, tU + δ]}.

Thus, if δ ≥ 0,

X 1
⋂
X 0 = {x ∈ Supp(X) : xβ ∈ [tL + δ, tU − δ]}
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and if δ ≤ 0,

X 1
⋂
X 0 = {x ∈ Supp(X) : xβ ∈ [tL − δ, tU + δ]}.

In this example, E(Y1 − Y0|X = x) is identified for all x ∈ Supp(X) if Supp(Xβ) is un-
bounded. If the support of Xβ is bounded, then E(Y1 − Y0|X = x) is identified for some x
values if tU − tL > 2δ. It will not be identified for x values such that xβ is within δ of the
limits of the support of Xβ.

The conditional expectations E(Y0|X = x) and E(Y1|X = x) need not be identified for all x ∈
Supp(X), and thus E(Y1 − Y0|X = x) need not be identified for all x ∈ Supp(X). In the case
where these quantities are not identified for a given x value, we can bound these quantities. We
now consider bounds on E(Y0|X = x). Define

U(x0) = {x : ∃ p1, p0, p1 > p0, such that (x, p0), (x0, p0), (x, p1), (x0, p1) ∈ Supp(X, P (Z)),

and h1(p0, p1, x)− h0(p0, p1, x0) ≥ 0}.

L(x0) = {x : ∃ p1, p0, p1 > p0, such that (x, p0), (x0, p0), (x, p1), (x0, p1) ∈ Supp(X,P (Z)),

and h1(p0, p1, x)− h0(p0, p1, x0) ≤ 0}.
From Lemma 3.1, we have

x ∈ U(x0) ⇒ ν(x, 1) ≥ ν(x0, 0)

x ∈ L(x0) ⇒ ν(x, 1) ≤ ν(x0, 0).

We now have the following theorem.

Theorem 3.2 Assume that (D, Y ) are generated according to equations (1)-(2). Assume condi-
tions (A-1)-(A-5). Let GP |x,x0(p) denote any distribution function which is absolutely continuous
with respect to the distribution of P (Z) conditional on X = x and with respect to the distribution
of P (Z) conditional on X = x0. If U(x0) is nonempty, then BU(x0) ≥ E(Y0|X = x0), with

BU(x0) = inf
x∈U(x0)

{∫ [
E((1−D)Y |X = x0, P (Z) = p)

+ E(DY |X = x, P (Z) = p)

]
dGP |x,x0(p)

}
.

If L(x0) is nonempty, then BL(x0) ≤ E(Y0|X = x0), with

BL(x0) = sup
x∈L(x0)

{∫ [
E((1−D)Y |X = x0, P (Z) = p)

+ E(DY |X = x, P (Z) = p)

]
dGP |x,x0(p)

}
.
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Proof: See Appendix A.

Note that the value of

∫ [
E((1−D)Y |X = x0, P (Z) = p)+E(DY |X = x, P (Z) = p)

]
dGP |x,x0(p)

and of

∫ [
E((1 − D)Y |X = x0, P (Z) = p) + E(DY |X = x, P (Z) = p)

]
dGP |x,x0(p) does not

depend on the choice of GP |x,x0 distribution as long as the distribution is absolutely continuous
with respect to both the distribution of P (Z) conditional on X = x and the distribution of P (Z)
conditional on X = x0. When there exists x ∈ U(x0) (or in U(x0)) such that h1(p0, p1, x) =
h0(p0, p1, x0) for some p1 > p0, then the bounds collapse to point identification. Similar bounds
can easily be constructed for E(Y1|X = x), E(Y1 − Y0|X = x), and E(Y1 − Y0|X = x,D = 1).

The selection model considered here is a special case of that considered by Heckman and
Vytlacil (1999,2001a), so that their bounds on E(Y1−Y0|X = x) immediately apply to the present
model if we assume that the outcome variable Y is bounded.19 The additional assumptions invoked
in this analysis beyond what was assumed in Heckman and Vytlacil (1999,2001a) allows us to
construct bounds that do not require Y to be bounded and which collapse to point identification
without large support conditions. However, while Heckman and Vytlacil (2001b) establishes that
the Heckman and Vytlacil (1999,2001a) bounds are sharp given there assumptions, there is no
similar result yet for the bounds of Theorem 3.2. Whether the bounds of Theorem 3.2 can be
improved upon thus remains a question for future research.

I conclude the section by considering the testable restrictions imposed by the model. The
assumption of a selection model imposes testable restrictions. Heckman and Vytlacil (2001a)
consider a model which includes the model of the present paper as a special case, and derive two
testable restrictions of the model.

Testable Restriction (1): Index sufficiency,

Pr(DY ∈ A|X = x, Z = z) = Pr(DY ∈ A|X = x, P (Z) = P (z)),

Pr((1−D)Y ∈ A|X = x, Z = z) = Pr((1−D)Y ∈ A|X = x, P (Z) = P (z)).

Testable Restriction (2): If Pr[Y1 ≥ y1
x|X = x] = 1, Pr[Y0 ≥ y0

x|X = x] = 1, then E[(Y0 −
y0

x)(1−D) | X,P (Z) = p] is decreasing in p and E[(Y1 − y1
x)D | X, P (Z) = p] is increasing

in p.

The model of this paper implies additional testable restrictions. Under conditions (A-1)-(A-5),
we have

19See Heckman and Vytlacil (2001b) for the relationship between the bounds of Heckman and Vytlacil
(1999,2001a) and the instrumental variable bounds of Balke and Pearl (1997) and Manski (1990, 1994).
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Testable Restriction (3):
∣∣∣∣
∫ ∫ (

h1(p0, p1, x1)− h0(p0, p1, x0)
)
dG(p0|x0, x1)dG(p1|x0, x1)

∣∣∣∣

=

∫ ∫ (∣∣∣∣h1(p0, p1, x1)− h0(p0, p1, x0)

∣∣∣∣
)
dG(p0|x0, x1)dG(p1|x0, x1)

where G(·|x0, x1) is any distribution function that is absolutely continuous with respect
to both the distribution of P (Z) conditional on X = x1 and the distribution of P (Z)
conditional on X = x0.

Testable Restriction (4): Define U(x),L(x), BU(x), BL(x) as in the statement of Theorem
3.2. Let A denote the set of x values such that both U(x) and L(x) are nonempty. Then

inf
x∈A

|BU(x)−BL(x)| ≥ 0.

Testable Restriction (3) follows directly from Lemma 3.1, while Testable Restriction (4) follows
directly from Theorem 3.2.

4 Estimation

For simplicity, the estimation analysis will proceed under the assumption that Z contains a
continuous element not contained in X. Recall that the identification analysis of the previous
section does not require this assumption, and note that the following estimation strategy can
be adapted for the case where Z contains only discrete elements. For ease of exposition, I only
consider estimation of E(Y0). However, estimation of E(Y1) is completely symmetric, which in
turn implies an estimator for the average treatment effect.

Given that Z contains a continuous element, and given smoothness conditions on P (Z) and
E(Y |X, P (Z), D) as functions of Z, we can work with the derivative form of the h1 and h0

functions. In particular, let

h1(x, p) =
∂

∂p
E

(
DY

∣∣X = x, P (Z) = p
)

h0(x, p) = − ∂

∂p
E

(
(1−D)Y

∣∣X = x, P (Z) = p
)

and
q(t1, t2) = E(Y |D = 1, h1(X, P (Z)) = t1, P (Z) = t2).

Define h−1
1 (t1; t2) = {x : h1(x, t2) = t1}, h−1

0 (t1; t2) = {x : h0(x, t2) = t1}. For a given t1, t2,
x1 ∈ h−1

1 (t1; t2) and x0 ∈ h−1
0 (t1; t2) implies that x1 ∈ h−1

1 h0(x0) where h−1
1 h0(·) was defined in

equation (9). From the identification analysis of the previous section, we have that

q(t1, t2) = E(Y1|D = 1, X ∈ h−1
1 (t1; t2), P (Z) = t2)

= E(Y0|D = 1, X ∈ h−1
0 (t1; t2), P (Z) = t2)
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Assume that the support of (h1(X,P (Z)), P (Z)) contains the support of (h0(X, P (Z)), P (Z)) so
that we can evaluate q(t1, t2) at all (t1, t2) evaluation points in the support of (h0(X,P (Z)), P (Z)).
Let Pi = P (Zi), hji = hj(Xi, Pi), and assume that {(Xi, Zi, Di, Yi) : i = 1, ..., N} is an i.i.d sample.
The identification analysis then suggests the following infeasible estimator of E(Y0),

∆̂ =
1

N

∑
i

[
(1−Di)Yi + Diq(h0i, Pi)

]
.

Theorem 4.1 Assume conditions (A-1)-(A-5). Assume that {Xi, Zi, Di, Yi : i = 1, ..., N} is i.i.d,
that Y0 has a positive, finite second moment, and that the support of (h1(X,P (Z)), P (Z)) contains
the support of (h0(X,P (Z)), P (Z)). Then

√
N

(
∆̂−∆√

V

)
d→ N(0, 1),

where

∆ = E(Y0)

V = Var

[
E

(
Y0

∣∣∣∣X,P, D

)]
+ E

[
(1− P )Var

(
Y0

∣∣∣∣X, P, D = 0

)]

Proof: From Theorem 3.1, we have that q(h0i, Pi) = E(Y0|D = 1, X = Xi, P (Z) = Pi). The
theorem then follows from applying the Central Limit Theorem for i.i.d. data with a positive,
finite second moment.

The estimator has the form of an imputation based estimator, with the value of Y0 for those
with D = 1 being imputed. The form is reminiscent of a matching estimator (see, e.g., Heckman,
Ichimura, and Todd, 1998, and Hahn,1998). However, the underlying assumptions of the matching
estimator is different from those assumptions imposed here, and the form of the imputation is
quite different as a result. If Di = 1, then the matching estimator uses E(Y0|D = 0, X = Xi) to
impute Y0i. The missing Y0i information for Di = 1 observations is filled in using Y0i′ data from
Di′ = 0 observations that have (approximately) the same value of X. In contrast, the estimator
proposed here fills in the missing Y0i information for Di = 1 observations using Y1i′ information
from Di′ = 1 observations that have different values of X, with the different value of X chosen in
a way to compensate for the effect of D. These very different imputation procedures are driven
by the difference in the underlying assumptions.

The above estimator would be feasible if the functions P (·), h1(·, ·), h0(·, ·), and E(Y |D =
1, h1(X,P (Z)) = ·, P (Z) = ·) were known. They are not known, which suggests using a two
step semiparametric estimator where these unknown functions are replaced by consistent, non-
parametric estimates. In addition, trimming is needed in practice for two reasons. First, to
get uniformly consistent estimates for P , h0 and h1 functions, we have to trim out those ob-
servations of (Xi, Zi) for which the value of the density fX,Z is low. Second, we have assumed
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thus far that the support of (h1(X, P (Z)), P (Z)) contains the support of (h0(Xi, P (Zi)), P (Zi)),
but this is not a realistic assumption. Thus, we need to trim out those observations for which
fh1,P evaluated at (h1(Xi, P (Zi)), P (Zi)) is low. Let the two trimming functions be denoted by
I1i = 1{fX,Z(Xi, Zi) ≥ q01} and I2i = 1{fh1,P (h0i, Pi) ≥ q02}, where q01, q02 > 0. These trimming
functions are not known since the corresponding densities are not known, and thus these trimming
functions must also be estimated. Thus, consider

∆̃ =

1
N

∑
i

[
(1−Di)Yi + Diq̂(ĥ0i, P̂i)

]
Î1iÎ2i

1
N

∑
i Î1iÎ2i

where P̂i = P̂ (Zi) with P̂ (·) a consistent nonparametric estimator of P (·), and so forth, and
Î1i = 1{f̂X,Z(Xi, Zi) ≥ q01}, Î2i = 1{f̂ĥ1,P̂ (ĥ0i, P̂i) ≥ q02}. In current work, I am deriving the
asymptotic distribution of this estimator when local polynomial regression estimators are used
in a first step for these unknown conditional expectations functions. See Appendix B. Note
that these estimation results are not finished. The preliminary results are that under regularity
conditions

(i) P̂ (z) is asymptotically linear with trimming:

[
P̂ (z)− P (z)

]
Î1(x, z) =

1

n

n∑
j=1

ψnP (Di, Xi, Zi; x, z) + b̂P (z) + R̂P (z)

where n−1/2
∑n

i=1 R̂P (Xi, Zi) = op(1), plimn→∞n−1/2
∑n

i=1 b̂P (Xi, Zi) = bP < ∞,
E[ψnP (Di, Xi, Zi; X, Z|X = x, Z = z] = 0.

(ii) ĥ0(x, P̂ (z)) is asymptotically linear with trimming:
[
ĥ0(x,P̂ (z),x)−h0(x,P (z),x)

]
Î1(x,z) = N−1

PN
j=1

h
ψNh0

(−(1−Dj)Yj ,Xj ,P (Zj);x,z)+
∂h0(x,P (z))

∂p
ψnP (Dj ,Xj ,Zj ;x,z)

i

+ b̂ĥ0
(x, z) + R̂ĥ0

(x, z)

with plimN→∞
1√
N

∑N
j=1 b̂ĥ0

(Xj, Zj) = bh0 + bh0P < ∞, plimN→∞
1√
N

∑N
j=1 R̂ĥ0

(Xj, Zj) = 0,

(iii) 1√
N

∑
j Dj

[
q̂(ĥ0j, P̂j)− q(h0j, Pj)

]
Î1j Î2j is asymptotically equivalent to

1√
NN

∑N
j=1

∑N
i=1

Dj

P (Zj)
ψNq(Yi, h1i, Pi; Xj, Zj, Pj, h0j)I2j + bq

(iv)
√

N [∆̃− E(Y0|A1 ∩ A2)] is asymptotically equivalent to

[
1

N

∑
i

I1iI2i

]−1

×
(

1√
N

∑
i

E

[
DjI2jψ(Di, Yi, Xi, Zi; Xj, Zj)

∣∣∣∣Yi, Di, Xi, Zi

]
+ b

+
1√
N

∑
i

[
(1−Di)Yi + Diq(h0i, Pi)− E(Y0|A1 ∩ A2)

]
I1iI2i

)
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where
A1 = {(x, z) ∈ supp(X, Z) : fX,Z(x, z) ≥ q01} ,

A2 = {(x, z) ∈ supp(X, Z) : fh1,P (h0(x, P (z)), P (z)) ≥ q02} ,

b = bqP + bqh0 + bqh0P + bq,

and

ψ(Di, Yi, Xi, Zi; Xj, Zj) =
∂q

∂P
(h0j, Pj)ψNP (Di, Yi, Xi, Zi; Xj, Zj)

+
∂q

∂h1

(h0j, Pj)ψNh0P (Di, Yi, Xi, Zi; Xj, Zj) +
1

P (Zj)
ψNq(Yi, h1i, Pi; Xj, Zj, Pj, h0j),

with

ψNh0P (Dj, Yj, Xj, Zj; x, z) := ψNh0(−(1−Dj)Yj, P (Zj), Xj; P (z), x, z)

+
∂h0(P (z), x)

∂p
ψNP (Dj, Xj, Zj; x, z).

The main argument and the regularity conditions are presented in Appendix B. Result (i), that
P̂ (z) is asymptotically linear with trimming under regularity conditions, is proven in Appendix
C.1. Result (ii), that ĥ0(x, P̂ (z)) is asymptotically linear with trimming under regularity con-
ditions, is proven in Appendix C.2. Result (iii), that 1√

N

∑
j Dj

[
q̂(ĥ0j, P̂j) − q(h0j, Pj)

]
Î1j Î2j is

asymptotically equivalent to a particular sum, is proven in Appendix C.3. Results related to the
trimming functions are collected in Appendix C.4. Appendix B combines these results to show
result (iv), which in turn establishes the asymptotic distribution theory for my estimator. These
results are still preliminary and incomplete.

5 Conclusion

This paper has shown identification and a consistent estimator of the average effect of a dummy
endogenous variable in a nonparametric, nonseparable model. While the paper has only considered
nonparametric identification and estimation of treatment effects, the results are promising for
identification more generally in models with dummy endogenous variables. For example, the
results can easily be extended to identification and estimation of the structural parameters of
semiparametric models with dummy endogenous variables. As another example, the analysis of
this paper can be immediately applied to identify state dependence in panel data models with
binary outcomes as long as there is a time-varying continuous regressor and the lagged dependent
variables do not have random coefficients associated with them.
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A Identification Proofs

Proof. (Lemma 3.1)

Consider the case where p1 > p0. (the case where p0 < p1 is symmetric). Consider the
numerator of h1(p0, p1, x1),

E(DY |X = x1, P (Z) = p1)− E(DY |X = x1, P (Z) = p0)

=

∫ p1

0

E(Y1|X = x1, U = u)du−
∫ p0

0

E(Y1|X = x1, U = u)du

=

∫ p1

p0

E(Y1|X = x1, U = u)du

=

∫ p1

p0

E(g(ν(x1, 1), ε)|U = u)du,

where the last equality is using assumption (A-2). Likewise, for the numerator of h0(p0, p1, x0),
we have

−
[
E((1−D)Y |X = x0, P (Z) = p1)− E((1−D)Y |X = x0, P (Z) = p0)

]

=

∫ p1

p0

E(g(ν(x0, 0)ε)|U = u)du.

Thus,

h1(p0, p1, x1)− h0(p0, p1, x0) =
1

p1 − p0

∫ p1

p0

E(g(ν(x1, 1), ε)− g(ν(x0, 0), ε)|U = u)du.

Using assumption (A-4), we have that the sign of this expression will be determined by the
sign of ν(x1, 0)− ν(x0, 1). Q.E.D..

Proof: (Lemma 3.1) Consider assertion (1). By Lemma 3.1, ν(x̃, 1) = ν(x, 0) for any x̃ ∈
h−1

1 h0(x). Thus,

E(DY |X ∈ h−1
1 h0(x), P (Z) = p)

= E(1[U ≤ P (Z)]g(ν(X, 1), ε)|X ∈ h−1
1 h0(x), P (Z) = p)

=

∫ [∫
1[U ≤ p]g(ν(x̃, 1), ε)dG(x̃|X ∈ h−1

1 h0(x), P = p))

]
dFε,U

=

∫ [∫
1[U ≤ p]g(ν(x, 0), ε)dG(x̃|X ∈ h−1

1 h0(x), P (Z) = p)

]
dFε,U

=

∫
1[U ≤ p]g(ν(x, 0), ε)dFε,U

= E(DY0|X = x, P = p)
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where G(x̃|X ∈ h−1
1 h0(x), P = p) is the distribution of X conditional on X ∈ h−1

1 h0(x), P =
p, and Fε,U is the distribution of (ε, U). The first equality follows from plugging in the model
for Y and D given by equations (1) and (2); the second equality follows from assumption
(A-2), that (X, Z) ⊥⊥ (ε, U); and the third equality is using that ν(x̃, 1) = ν(x, 0) for any
x̃ ∈ h−1

1 h0(x) by Lemma 3.1. Thus,

E(DY |X ∈ h−1
1 h0(x), P = p) + E((1−D)Y |X = x, P = p)

= E(DY0|X = x, P = p) + E((1−D)Y0|X = x, P = p)
= E(Y0|X = x, P = p)
= E(Y0|X = x),

so that

∫ (
E(DY |X ∈ h−1

1 h0(x), P = p) + E((1−D)Y |X = x, P = p)

)
dGP |X(p|x)

=

∫
E(Y0|X = x)dGP |X(p|x)

= E(Y0|X = x)

and the result now follows immediately. Assertions (2) and (3) follow from analogous argu-
ments, and assertion (4) follows from assertions (1) and (2). QED.

Proof: (Lemma 3.2) For any x such that h1(p0, p1, x)− h0(p0, p1, x0) ≥ 0, we have ν(x, 1) ≥
ν(x0, 0) by Lemma 3.1. Thus, for any x ∈ U(x0),

E((1−D)Y |X = x0, P (Z) = p) + E(DY |X = x, P (Z) = p)

= E((1−D)Y0|X = x0, P (Z) = p) + E(1[U ≤ P (Z)]g(ν(X, 1), ε)|X = x, P (Z) = p)
= E((1−D)Y0|X = x0, P (Z) = p) + E(1[U ≤ p]g(ν(x, 1), ε))
≥ E((1−D)Y0|X = x0, P (Z) = p) + E(1[U ≤ p]g(ν(x0, 0), ε))
= E((1−D)Y0|X = x0, P (Z) = p) + E(DY0|X = x0, P (Z) = p)
= E(Y0|X = x0, P (Z) = p)
= E(Y0|X = x0)

and thus

inf
x∈U(x0)

{
E((1−D)Y |X = x0, P (Z) = p) + E(DY |X = x, P (Z) = p)

}
≥ E(Y0|X = x0).

The lower bound follows from the analogous argument. QED.
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B Estimation Proofs: Main Results

(PRELIMINARY AND INCOMPLETE)

√
N(∆̃− E(Y0|A1 ∩ A2)) =

1√
N

N∑
i=1

[[
(1−Di)Yi + Diq̂(ĥ0i, P̂i)

]
Î1iÎ2i

N−1
∑n

i=1 Î1iÎ2i

− E(Y0|(X, Z) ∈ A1 ∩ A2)

]

=
1√
N

N∑
i=1

[
(1−Di)Yi + Diq̂(h0i, Pi)− E(Y0|(X,Z) ∈ A1 ∩ A2)

]
Î1iÎ2i

N−1
∑n

i=1 Î1iÎ2i

where

P̂ (z) = ̂E(D|Z = z)

P (z) = E(D|Z = z)

ĥ0(x, P̂ (z)) =
̂∂

∂P
E

[− (1−D)Y |X = x, P (Z) = P̂ (z)
]

h0(x, P (z)) =
∂

∂P
E

[− (1−D)Y |X = x, P (Z) = P (z)
]

h1(x, P (z)) =
∂

∂P
E

[
DY |X = x, P (Z) = P (z)

]

q̂(ĥ0(x, P̂ (z)), P̂ (z)) = ̂E(Y |D = 1, h1(X,P (Z)) = ĥ0(x, P̂ (z)), P (Z) = P̂ (z))

q(h0(x, P (z)), P (z)) = E(Y |D = 1, h1(X,P (Z)) = h0(x, P (z)), P (Z) = P (z))

and

Î1i := 1
{

f̂X,Z(Xi, Zi) ≥ q01

}

I1i := 1 {fX,Z(Xi, Zi) ≥ q01}
Î2i := 1

{
f̂ĥ1(X,P̂ (Z)),P̂ (Z)(ĥ0(Xi, P̂ (Zi)), P̂ (Zi)) ≥ q02

}

I2i := 1
{
fh1(X,P (Z)),P (Z)(h0(Xi, P (Zi)), P (Zi)) ≥ q02

}

A1 := {(x, z) ∈ supp(X, Z) : fX,Z(x, z) ≥ q01}
A2 :=

{
(x, z) ∈ supp(X, Z) : fh1(X,P (Z)),P (Z)(h0(x, P (z)), P (z)) ≥ q02

}

with kernel density estimators used for density estimation and local polynomial regression used
for estimation of the conditional expectation functions. To study the asymptotic properties of
our estimator, we break it into several pieces and study the behavior of each piece separately. In
analyzing the behavior of each piece we will rely on the results stated in Heckman, Ichimura and
Todd (1998) extensively. On the other hand, our estimator embodies trimming functions, which
rely on estimators for the underlying densities. In the following, we will rely on a theorem stated
in Silverman (1978) to argue that the kernel density estimators that the trimming functions are
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based on approach the true density in the sup norm. Before starting our analysis, let us state the
equicontinuity and Hoeffding, Powell, Stock and Stoker lemmas used in Heckman, Ichimura and
Todd (1998) and Theorem A of Silverman (1978).

To set up the notation for Silverman’s theorem suppose gN is the kernel estimate for the
multivariate density g defined by

gN(x) =
N∑

i=1

N−1h−d̃K̃

(
Xi − x

h̃

)

The following conditions are used in Silverman’s theorems:

(C): (a) K̃ is uniformly continuous (with modulus of continuity wK̃) and of bounded variation
V (K̃)

(b)
∫ |K̃(x)|dx < ∞ and K̃(x) → 0 as ||x|| → ∞

(c)
∫

K̃(x)dx = 1

(d)
∫ √

||(x log ||x||)|||dK̃(x)| < ∞

Theorem (A): Suppose K̃ satisfies conditions (C) and g is uniformly continuous. Suppose h̃ → 0

and (Nh̃d̃)−1 log N → 0 as N →∞. Then, defining gN as above,

sup |gN − g| → 0 a.s. N →∞

If K̃ is everywhere differentiable and GN denotes the empirical measure

h̃
∂gN

∂xk

(x) = −
∫

h̃d̃K̃ ′
(

t− x

h̃

)
dGN(t)

has the same structure as gn with K̃ replaced by K̃ ′. Therefore, as long as g has uniformly continu-
ous partial derivatives and conditions (C)(a), (b) and (d) are satisfied by K̃ ′, and (Nh̃d̃+1)−1 log N →
0 as N →∞, for each k ∈ {1, ..., d̃}, we have

sup

∣∣∣∣
∂gN

∂xk

(x)− ∂g

∂xk

(x)

∣∣∣∣ → 0 a.s. N →∞

To state the two lemmas from Heckman, Ichimura and Todd (1998) we need to define some
notation: For r = 1 and 2, let Sr denote the r-fold product space of S ⊂ Rd and define a class
of functions ΛN over Sr. For any λN ∈ ΛN , write λN,ir as a short hand for either λN(si) or
λN(si1 , si2), where i1 6= i2. We define UNλN =

∑
ir

λN,ir , where
∑

ir
denotes the summation over

all permutations of r elements of {s1, ..., sN} for r = 1 or 2. Then UNλN is called a U-process over
λN ∈ ΛN . For r = 2, we assume that λN(Si, Sj) = λN(Sj, Si). Note that a normalizing constant
might be included as a part of λN . We call a U-process degenerate if all conditional expectations
given other elements are 0. When r = 1, this condition is defined to mean that EλN = 0.
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In the following, we assume that ΛN is a subset of L2(Pr), the L2 space defined over Sr using
the product measure of P, Pr. N2(τ,P, ΛN) denotes the L2 covering number of ΛN . On the other

hand, ||λN ||2 :=
√∑

ir
E(λN,ir)

2.

Equicontinuity Lemma: Let {Si}N
i=1 be an iid sequence of random variables generated by P.

For a degenerate U-process {UNλN} over a separable class of functions ΛN ⊂ L2(Pr) suppose the
following assumptions hold:

(i) There exists an FN ∈ L2(Pr) such that for any λN ∈ ΛN , |λN | < FN such that
lim supN→∞

∑
ir

E(F 2
N,ir

) < ∞;

(ii) For each δ > 0, limN→∞
∑

ir
E(F 2

N,ir
1{FN,ir > δ}) = 0;

(iii) There exists α(τ) and τ > 0 such that for each 0 < τ ≤ τ , supPN2(τ,P, Λn) ≤ α(τ) and∫ τ

0
[log α(t)]r/2dt < ∞.

Then for any ε > 0, there exists δ > 0 such that

lim
N→∞

P

(
sup

||λ1N−λ2n||2≤δ

|UN(λ1N − λ2N)| > ε

)
= 0

Hoeffding, Powell, Stock and Stoker Lemma: Suppose {Si}N
i=1 is i.i.d., UNλN = (N(N −

1))−1
∑

ir
λN(Si, Sj) where λN is symmetric in its arguments, E[λN(Si, Sj)] = 0, and ÛNλN =

N−1
∑N

i=1 2pN(Si), with pN(Si) = E[λN(Si, Sj)|Si]. If E[λN(Si, Sj)
2] = o(N), then NE[(UNλN −

ÛNλN)2] = o(1).

Now we are ready to state our assumptions. Suppose {h̃N1}, K̃1, {h̃N2} and K̃2 denote the
bandwidth parameter sequence and kernel function used to estimate fX,Z and fh1,P , respectively.
Similarly, let {hNP}, {hNh} and {hNq} and KP , Kh and Kq denote the bandwidth sequences and
kernel functions used in estimating, P (Z), h0 (h1)

20 and q, respectively. We will call a function
p-smooth if it is p + 1 times continuously differentiable and its p + 1st derivative is Holder contin-
uous with parameter 0 < a ≤ 121.

Assumption B.1 {Di, Yi, Xi, Zi} are i.i.d., (Xi, Zi) takes values in RdX × RdZ = Rd, and
var(Yi) < ∞
Assumptions related to the estimation of fX,Z and fh1,P :

20We can use the same kernel function and bandwidth sequence in the estimation of h0 and h1.
21We use the same definiton as in Heckman, Ichimura and Todd. Namely, we say a function % is Holder continuous

at X = x0 with constant 0 < a ≤ 1 if |%(x, t)−%(x0, t)| ≤ C||x−x0||a for some C > 0 for all x and t in the domain
of the function %(·, ·). We assume that Holder continuity holds uniformly over t whenever there is an additional
argument.
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Assumption B.2 (a) fX,Z and fh1,P are both uniformly continuous and have uniformly con-
tinuous first derivatives.

(b) fX,Z, P (Z), h1(X, P (Z)), h0(X, P (Z)) and fh1,P are all p̃1-smooth with p̃1 > d.

(c) Let q01 > 0 and q02 > 0 be such that

(i) q01 has a neighborhood U such that fX,Z(X, Z) has a continuous Lebesgue density that
is strictly positive on U . Moreover for each (x, z) ∈ f−1

X,Z(U), ||DfX,Z(x, z)|| > 0.

(ii) q02 has a neighborhood V such that fh1,P (h1(X, P (Z)), P (Z)) has a continuous Lebesgue
density that is strictly positive on V . Moreover for each (x, z) ∈ f−1

X,Z(U),
||Dfh1,P (h0(x, P (z))|| > 0.

(d) (i) For each z ∈ supp(Z) such that there exists an x ∈ supp(X) with (x, z) ∈ f 1
X,Z(U),

||DP (z)|| > 0.

(ii) For each (x, z) ∈ f−1
X,Z(U), ||Dxh1(x, P (z))|| > 0, and ||DP h1(x, P (z))|| > 0.

(e) K̃1, K̃ ′
1, K̃2 and K̃ ′

2 satisfy the conditions of Theorem (A). Moreover, K̃2 is Lipschitz.

(f) (i) h̃N1 → 0, log N

Nh̃d+1
N1

→ 0.

(ii) h̃N2 → 0, log N

Nh̃3
N2

→ 0, and Nh̃12
N2 → c ∈ (0,∞].

Assumptions related to the estimation of E(D|Z):

Assumption B.3 (a) E(Di|Zi = z) is pP -smooth with pP > dz. The point z is in the interior
of the support of Z.

(b) Bandwidth sequence {hNP} satisfies hNP → 0, Nhdz
NP / log N → ∞, and Nh

2pP
NP → cP ∈

(0,∞).

(c) Kernel function KP is symmetric, supported on acompact set, and is Lipschitz continuous.
Also it has moments of order pP + 1 through pP − 1 that are equal to 0.

Assumptions related to the estimation of E(DY |P (Z), X) and E(−(1−D)Y |P (Z), X):

Assumption B.4 (a) E(DY |P (Z) = p, X = x) and E(−(1−D)Y |P (Z) = p,X = x) are both
ph-smooth with ph > dx + 2. The point (p, x) is in the interior of the support of (X,P (Z)).

(b) {hNh} satisfies Nhd+1
Nh / log N →∞ and Nh

2(ph−1)
Nh → ch < ∞ for some ch ≥ 0.

(c) Kernel function Kh(·) is 1-smooth, symmetric and supported on a compact set. It has
moments of order p + 1 through ph − 1 that are equal to zero.

Assumptions related to the estimation of E(Y |D = 1, h1(X, P (Z)), P (Z)), P (Z)):
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Assumption B.5 (a) E(DY |h1(X, P (Z)) = h, P (Z) = p) is pq-smooth with pq > 2. The point
(h, p) is in the interior of the support of (h1(X,P (Z)), P (Z)).

(b) {hNq} satisfies Nh2
Nq/ log N →∞ and Nh

2pq

Nq → cq < ∞ for some cq ≥ 0.

(c) Kernel function Kq(·) is 1-smooth, symmetric and supported on a compact set. It has
moments of order p + 1 through pq − 1 that are equal to zero.

(d) The function P (Z) is bounded away from 0.

We are now ready to study the asymptotic behavior of our estimator. Note that

√
N

[
∆̃− E(Y0|A1 ∩ A2)

]
= 1√

N

∑N
i=1

[
(1−Di)Yi+Diq(h0i,Pi)−E(Y0|(X,Z)∈A1∩A2)

]
Î1iÎ2i

N−1
Pn

i=1 Î1iÎ2i

+ 1√
N

∑N
i=1

Di

[
q̂(ĥ0i,P̂i)−q(h0i,Pi)

]
Î1iÎ2i

N−1
Pn

i=1 Î1iÎ2i

(10)

We will study the asymptotic behavior of N−1/2
∑N

i=1 Di

[
q̂(ĥ0i, P̂i)− q(h0i, Pi)

]
Î1iÎ2i,

N−1/2
∑N

i=1

[
(1 −Di)Yi + Diq(h0i, Pi) − E(Y0|(X, Z) ∈ A1 ∩ A2)

]
Î1iÎ2i, and N−1

∑N
i=1 Î1iÎ2i sep-

arately. An application of the mean value theorem to the first of these terms reveals that the
asymptotic behavior of that term is largely determined by the asymptotic behavior of P̂ (z),
ĥ0(x, P̂ (z)) and q̂(h0(x, P (z)), P (z)). The asymptotic properties of P̂ (z) can be obtained by
applying Theorem 3 of HIT. Analyzing the asymptotic behavior of ĥ0(x, P̂ (z)) requires simple
modifications of Theorems 3 and 4 of HIT. The modifications are needed because h0(X, P (Z))
itself is not a conditional expectation, but it is the derivative of one. Heckman, Ichimura and
Todd are interested in the first element of the estimated coefficient vector, we are interested in
the second element. Analyzing the asymptotic properties of q̂(h0(x, P (z)), P (z)) is also slightly
different because this is an estimator for the expectation of Y given D = 1, h1(X, P (Z)) and P (Z)
evaluated at the value the random vector

(
h0(X, P (Z)), P (Z)

)
takes (and D = 1). Evaluating this

conditional expectation at
(
h0(X, P (Z)), P (Z)

)
is meaningful only when

(
h0(X,P (Z)), P (Z)

)
is

an element of the support of
(
h1(X, P (Z)), P (Z)

)
. Consequently, we have to use another trim-

ming function to make sure our evaluation point is in the support of
(
h1(X, P (Z)), P (Z)

)
. The

details of our trimming function and how these three estimators behave asymptotically are given
in Appendix C.

1√
N

∑N
i=1 Di

[
q̂(ĥ0i, P̂i)− q(h0i, Pi)

]
Î1iÎ2i = 1√

N

∑N
i=1 Di

[
q̂(ĥ0i, P̂i)− q̂(h0i, Pi)

]
Î1iÎ2i

+ 1√
N

∑N
i=1 Di

[
q̂(h0i, Pi)− q(h0i, Pi)

]
Î1iÎ2i

(11)

To deal with the first of these two terms, we use the Mean Value Theorem.

1√
N

∑N
i=1 Di

[
q̂(ĥ0i, P̂i)−Diq̂(h0i, Pi)

]
Î1iÎ2i = 1√

N

PN
i=1 Di

∂q̂
∂h1

(h̃0i,P̃i)
(

ĥ0(Xi,P̂ (Zi))−h0(Xi,P (Zi))
)

Î1iÎ2i

+ 1√
N

∑N
i=1 Di

∂q̂
∂P

(h̃0i, P̃i)
(
P̂ (Zi)− P (Zi)

)
Î1iÎ2i

(12)
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where for each i, (h̃0i, P̃i) is between (h0(Xi, P (Zi)), P (Zi)) and (ĥ0(Xi, P̂ (Zi)), P̂ (Zi)). It is easier
to analyze these terms separately first, and then combine the results later. We now proceed as
follows. Steps 1 and 2 (sections B.1 and B.2) examine the first and second terms of equation 12,
respectively. Steps 3 (section B.3) considers the second term of equation 11. Thus, steps 1 to 3
consider each term of equation 11, and thus analyze the numerator of the second term of equation
10. In step 4 (section B.4), we consider the numerator of the first term of equation 10. In step
5 (section B.5), we consider the numerator of equation 10. The result stated in then text then
immediately follows from Slutsky.

B.1 Step 1:

1√
N

N∑
i=1

Di
∂q̂

∂P
(h̃0i, P̃i)

(
P̂ (Zi)− P (Zi)

)
Î1iÎ2i = 1√

N

PN
i=1 Di[ ∂q̂

∂P
(h̃0i,P̃i)− ∂q

∂P
(h0i,Pi)]

(
P̂ (Zi)−P (Zi)

)
Î1iÎ2i

+
1√
N

N∑
i=1

Di
∂q

∂P
(h0i, Pi)

(
P̂ (Zi)− P (Zi)

)
Î1iÎ2i

By Appendix C.1, we know that

[
P̂ (z))− P (z)

]
Î1(x, z) = N−1

N∑
i=1

ψNP (Di, Zi; x, z) + b̂P (x, z) + R̂P (x, z)

where E[ψNP (Di, Zi; X, Z)|X = x, Z = z] = 0, plimN→∞N−1/2
∑N

i=1 b̂P (Xi, Zi) = bP < ∞, and

plimN→∞N−1/2
∑N

i=1 R̂P (Xi, Zi) = 0. Substituting all these in yields

1√
N

∑N
i=1 Di

[
∂q̂
∂P

(h̃0i, P̃i)− ∂q
∂P

(h0i, Pi)
] (

P̂ (Zi)− P (Zi)
)
Î1iÎ2i

= 1
N
√

N

∑N
i=1 Di

[
∂q̂
∂P

(h̃0i, P̃i)− ∂q
∂P

(h0i, Pi)
]∑N

j=1 ψNP (Dj, Zj; Xi, Zi)Î2i

+ 1√
N

∑N
i=1 Di

[
∂q̂
∂P

(h̃0i, P̃i)− ∂q
∂P

(h0i, Pi)
]
b̂P (Xi, Zi)Î2i

+ 1√
N

∑N
i=1 Di

[
∂q̂
∂P

(h̃0i, P̃i)− ∂q
∂P

(h0i, Pi)
]
R̂P (Xi, Zi)Î2i

Let A1 := {(x, z) ∈ supp(X, Z) : f̂(x, z) ≥ q01− εf1}. Then by Appendices C.1 and C.2, we know

that P̂ (z) is uniformly consistent for P (z), and ĥ0(P̂ (z), x) is uniformly consistent for h0(P (z), x))
on A1. Then applying theorem 4 of Heckman, Ichimura and Todd to q̂ for the set of observations
for which Di = 1, we know that ∂q̂

∂P
(h, p) is uniformly consistent for ∂q

∂P
(h, p) on A1 ∩ A2

22. Then
using the equicontinuity lemma we can show that the probability limit of each of these terms is

22Note that A1 ∩A2 ⊂ A1
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0, so that

1√
N

N∑
i=1

Di
∂q̂

∂P
(h̃0i, P̃i)

(
P̂ (Zi)− P (Zi)

)
Î1iÎ2i=

AE 1√
N

N∑
i=1

Di
∂q

∂P
(h0i, Pi)

(
P̂ (Zi)− P (Zi)

)
Î1iÎ2i

The latter term in turn equals

1
N
√

N

∑N
i=1 Di

∂q
∂P

(h0i, Pi)
∑N

j=1 ψNP (Dj, Zj; Xi, Zi)Î2i

+ 1√
N

∑N
i=1 Di

∂q
∂P

(h0i, Pi)b̂P (Xi, Zi)Î2i + 1√
N

∑N
i=1 Di

∂q
∂P

(h0i, Pi)R̂P (Xi, Zi)Î2i

Using continuity of ∂q
∂P

(h0i, Pi), compactness of A1 ∩ A2, and the explicit form of b̂P , and R̂P , we
can show that

bqP := plimN→∞
1√
N

N∑
i=1

Di
∂q

∂P
(h0i, Pi)b̂P (Xi, Zi)Î2i < ∞

and

plimN→∞
1√
N

N∑
i=1

Di
∂q

∂P
(h0i, Pi)R̂P (Xi, Zi)Î2i = 0

On the other hand, using the equicontinuity lemma once more, we can show that

1

N
√

N

N∑
i=1

Di
∂q

∂P
(h0i, Pi)

N∑
j=1

ψNP (Dj, Zj; Xi, Zi)
(
Î2i − I2i

)
= oP (1)

Combining these results, we conclude that

1√
N

N∑
i=1

Di
∂q̂

∂P
(h̃0i, P̃i)

(
P̂ (Zi)− P (Zi)

)
Î1iÎ2i

=AE 1

N
√

N

N∑
i=1

N∑
j=1

Di
∂q

∂P
(h0i, Pi)ψNP (Dj, Zj; Xi, Zi)I2i + V bqP .

Next, we focus on

1

N
√

N

N∑
i=1

N∑
j=1

Di
∂q

∂P
(h0i, Pi)ψNP (Dj, Zj; Xi, Zi)I2i

This term can be broken into

1

N
√

N

N∑
i=1

Di
∂q

∂P
(h0i, Pi)ψNP (Di, Zi; Xi, Zi)I2i +

1

N
√

N

N∑
i=1

∑

j 6=i

Di
∂q

∂P
(h0i, Pi)ψNP (Dj, Zj; Xi, Zi)I2i
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We can apply a strong law of large numbers to the first of these terms.

E

{
Di

∂q

∂P
(h0i, Pi)ψNP (Di, Zi; Xi, Zi)I2i

}
= E

{
∂q

∂P
(h0i, Pi)I2iE

[
DiψNP (Di, Zi; Xi, Zi)|Xi, Zi

]}

E
[
DiψNP (Di, Zi; Xi, Zi)|Xi, Zi

]
= I1(Xi, Zi)e1[M

p
pN(Zi)]

−1e′1h
−dz
NP Kp(0)E

[
Diε

P
i |Zi

]

where εP
i = Di − E(Di|Zi), so that E(Diε

P
i |Zi) = P (Zi)

(
1− P (Zi)

)
. So unfortunately, we don’t

have E
{
Di

∂q
∂P

(h0i, Pi)I2(Xi, Zi)ψNP (Di, Zi; Xi, Zi)
}

= 0. But

E
{
Di

∂q
∂P

(h0i, Pi)I2(Xi, Zi)ψNP (Di, Zi; Xi, Zi)
}

< ∞, implies that 23

N−3/2
∑N

i=1 Di
∂q
∂P

(h0i, Pi)I2iψNP (Di, Zi; Xi, Zi) =
1√
N

∑N
i=1

1
N

[
Di

∂q
∂P

(h0i, Pi)I2iψNP (Di, Zi; Xi, Zi)− E
(
Di

∂q
∂P

(h0i, Pi)I2iψNP (Di, Zi; Zi)
)]

+ 1
N
√

N
E

(
Di

∂q
∂P

(h0i, Pi)I2iψNP (Di, Zi; Xi, Zi)
)

= op(1)

Next, we deal with the sum corresponding to different indices:

N−3/2
∑N

i=1

∑
j 6=i Di

∂q
∂P

(h0i, Pi)I2iψNP (Dj, Zj; Xi, Zi)

= N−3/2
∑N

i=1

∑
j 6=i

(
1
2
Di

∂q
∂P

(h0i, Pi)I2iψNP (Dj, Zj; Xi, Zi) + 1
2
Dj

∂q
∂P

(h0j, Pj)I2jψNP (Di, Zi; Xj, Zj)
)

E
[
Di

∂q
∂P

(h0i, Pi)I2iψNP (Dj, Zj; Xi, Zi)
]

=

E

[
Di

∂q
∂P

(
h0(Xi, P (Zi)), P (Zi)

)
I2(Xi, Zi)e1[M

P
pN(Zi)]

−1εP
j

[(
Zj−Zi

hNP

)Qp
]′

h−dz
NP KP

(
Zj−Zi

hNP

)]

=EXi,Zi,Di,Zj

"
Di

∂q
∂P

(
h0(Xi,P (Zi)),P (Zi)

)
I2(Xi,Zi)e1[MP

pN (Zi)]
−1E

(
εP
j |Zj

)��
Zj−Zi
hNP

�Qp
�′

h−dz
NP KP

�
Zj−Zi
hNP

�#
=0

Similarly, E
[
Dj

∂q
∂P

(h0j, Pj)I2(Xj, Zj)ψNP (Di, Zi; Xj, Zj)
]

= 0. On the other hand,

N−3/2
∑N

i=1

∑
j 6=i

1
2

(
Di

∂q
∂P

(h0i, Pi)I2iψNP (Dj, Zj; Xi, Zi) + Dj
∂q
∂P

(h0j, Pj)I2jψNP (Di, Zi; Xj, Zj)
)

1√
N(N−1)

∑N
i=1

∑
j 6=i

N−1
2N

(
Di

∂q
∂P

(h0i, Pi)I2iψNP (Dj, Zj; Xi, Zi) + Dj
∂q
∂P

(h0j, Pj)I2jψNP (Di, Zi; Xj, Zj)
)

Since limN→∞ N−1
N

= 1, the asympototic behavior of this last object is the same as the asymptotic
behavior of

1√
N(N − 1)

N∑
i=1

∑

j 6=i

1

2

(
Di

∂q

∂P
(h0i, Pi)I2iψNP (Dj, Zj; Xi, Zi) + Dj

∂q

∂P
(h0j, Pj)I2jψNP (Di, Zi; Xj, Zj)

)

23Note that Nh2dz

NP →∞.
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Let

ζN(Di, Xi, Zi, Dj, Dj, Xj, Zj) =
1

2
Di

∂q

∂P
(h0i, Pi)I2iψNP (Dj, Zj; Xi, Zi)

+
1

2
Dj

∂q

∂P
(h0j, Pj)I2jψNP (Di, Zi; Xj, Zj)

Then by Hoeffding, Powell, Stock and Stoker lemma, if E (ζN(Di, Xi, Zi, Dj, Xj, Zj))
2 = o(N),

then

NE
h
( 1

N(N−1)

PN
i=1

P
j 6=i ζN (Di,Xi,Zi,Dj ,Xj ,Zj)− 1

N

PN
i=1 2E[ζN (Di,Xi,Zi,Dj ,Xj ,Zj)|Xi,Zi])

2
i
=o(1)

E

��
1√

N(N−1)

PN
i=1

P
j 6=i ζN (Di,Xi,Zi,Dj ,Xj ,Zj)− 1√

N

PN
i=1 2E[ζN (Di,Xi,Zi,Dj ,Xj ,Zj)|Xi,Zi]

�2
�
=o(1)

1√
N(N−1)

∑N
i=1

∑
j 6=i

1
2

(
Di

∂q
∂P

(h0i, Pi)I2iψNP (Dj, Zj; Xi, Zi) + Dj
∂q
∂P

(h0j, Pj)I2jψNP (Di, Zi; Xj, Zj)
)

→P 1√
N

∑N
i=1 2E[ζN(Di, Xi, Zi, Dj, Xj, Zj)|Di, Xi, Zi]

2E[ζN(Di, Xi, Zi, Dj, Xj, Zj)|Di, Xi, Zi] = Di
∂q

∂P
(h0i, Pi)I2iE[ψNP (Dj, Zj; Xi, Zi)|Di, Xi, Zi]

+E

[
Dj

∂q

∂P
(h0j, Pj)I2jψNP (Di, Zi; Xj, Zj)|Di, Xi, Zi

]

E[ψNP (Dj ,Zj ;Xi,Zi)|Di,Xi,Zi]=
1

h
dz
NP

I1(Xi,Zi)[M
q
pN (Zi)]

−1E

���
Zj−Zi
hNP

�Qp
�′

Kq
�

Zj−Zi
hNP

�
εP
j |Di,Xi,Zi

�

= 1

hdz
NP

I1(Xi, Zi)[M
q
pN(Zi)]

−1E

(
E

{[(
Zj−Zi

hNP

)Qp
]′

Kq
(

Zj−Zi

hNP

)
εP

j |Di, Xi, Zi, Zj

}
|Di, Xi, Zi

)
= 0

Therefore,

2E[ζN(Di, Xi, Zi, Dj, Xj, Zj)|Di, Xi, Zi] = E

[
Dj

∂q

∂P
(h0j, Pj)I2jψNP (Di, Zi; Xj, Zj)|Di, Xi, Zi

]

Next, we investigate if can we get Eζ(Di, Xi, Zi, Dj, Xj, Zj)
2 = o(N) from our basic assumptions?

This requires

E

{
Di

(
∂q
∂P

(h0i, Pi)
)2

I2
2iI

2
1i(ε

P
j )2

(
e1[M

q
pN(Zi)]

−1

[(
Zj−Zi

hNP

)Qp
]′)2

h−2dz
NP Kq

(
Zj−Zi

hNP

)2
}

= o(N)

and

E
{
DiDj

∂q
∂P

(h0i, Pi)
∂q
∂P

(h0j, Pj)I2iI2jψNP (Dj, Zj; Xi, Zi)ψNP (Di, Zi; Xj, Zj)
}

= o(N)
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By Cauchy-Schwarz inequality, the first one implies the second. Thus, we only need to make
sure the first one holds. Now, to make sure that P̂ (z) is an asymptotically linear estimator for
P (z), we had to assume that for pP > dz, Nh2p

NP → c < ∞. This means that Nh2dz
NP → ∞, and

1

Nh2dz
NP

→ 0, as long as c > 0. With c > 0, the required condition will hold if, for each N ,

E



Di

(
∂q

∂P
(h0i, Pi)

)2

I1iI2i(ε
P
j )2

(
e1[M

q
pN(Zi)]

−1

[(
Zj − Zi

hNP

)Qp
]′)2 (

Kq

(
Zj − Zi

hNP

))2



 < ∞

On the other hand,

E

{
Di

(
∂q
∂P

(h0i, Pi)
)2

I1iI2i(ε
P
j )2

(
e1[MpN(Zi)]

−1

[(
Zj−Zi

hNP

)Qp
]′)2 (

Kq
(

Zj−Zi

hNP

))2
}

= E

{
P (Zi)P (Zj)

(
1− P (Zj)

)
I1iI2i

(
∂q
∂P

(h0i, Pi)
)2

(
e1[MpN(Zi)]

−1

[(
Zj−Zi

hNP

)Qp
]′)2 (

Kq
(

Zj−Zi

hNP

))2
}

Therefore, the desired condition will hold, as long as, for each N ,

E





(
∂q

∂P
(h0i, Pi)

)2
(

e1[MpN(Zi)]
−1I1iI2i

[(
Zj − Zi

hNP

)Qp
]′)2 (

Kq

(
Zj − Zi

hNP

))2



 < ∞

For sufficiently large N this is true, because the kernel function is 0 outside a compact set, ∂q
∂P

and K are continuous functions and Mp is nonsingular. Thus,

1√
N

∑N
i=1 Di

∂q̂
∂P

(h̃0i, P̃i)
(
P̂ (Zi)− P (Zi)

)
Î1iÎ2i =AE

N−1/2
∑N

i=1 E
[
Dj

∂q
∂P

(h0j, Pj)I2jψNP (Di, Zi; Xj, Zj)|Di, Zi, Xi

]
+ bqP

= N−1/2
∑N

i=1 E
[
Dj

∂q
∂P

(h0j, Pj)I2jψNP (Di, Zi; Xj, Zj)|Yi, Di, Zi, Xi

]
+ bqP

B.2 Step 2:

1√
N

∑N
i=1 Di

∂q̂
∂h1

(h̃0i, P̃i)
(
ĥ0(Xi, P̂ (Zi))− h0(Xi, P (Zi))

)
Î1iÎ2i =

1√
N

∑N
i=1 Di

[
∂q̂
∂h1

(h̃0i, P̃i)− ∂q
∂h1

(h0i, Pi)
] [

ĥ0(Xi, P̂ (Zi))− h0(Xi, P (Zi))
]
Î1iÎ2i

+ 1√
N

∑N
i=1 Di

∂h1

∂P
(h0i, Pi)

[
ĥ0(Xi, P̂ (Zi))− h0(Xi, P (Zi))

]
Î1iÎ2i

By Appendix C.2, we know that

[
ĥ0(Xi, P̂ (Zi))− h0(Xi, P (Zi))

]
Î1(x, z) = N−1

N∑
i=1

ψNh0P (Di, Yi, Xi, Zi; x, z) + b̂ĥ0
(x, z) + R̂ĥ0

(x, z)

33



where E[ψNh0P (Di, Yi, Xi, Zi; X,Z)|X = x, Z = z] = 0,
plimN→∞N−1/2

∑N
i=1 b̂ĥ0

(Xi, Zi) = bh0P < ∞, and plimN→∞N−1/2
∑N

i=1 R̂ĥ0
(Xi, Zi) = 0. Then

using arguments similar to those in step 1, we can show that

1√
N

∑N
i=1 Di

∂q̂
∂h1

(h̃0i, P̃i)
[
ĥ0(Xi, P̂ (Zi))− h0(Xi, P (Zi))

]
Î1iÎ2i=

AE

1√
N

∑N
i=1 Di

∂q
∂h1

(h0i, Pi)
[
ĥ0(Xi, P̂ (Zi))− h0(Xi, P (Zi))

]
Î1iÎ2i

The latter term in turn equals

1
N
√

N

∑N
i=1 Di

∂q
∂h1

(h0i, Pi)
∑N

j=1 ψNh0P (Dj, Yj, Xj, Zj; Xi, Zi)Î2i

+ 1√
N

∑N
i=1 Di

∂q
∂h1

(h0i, Pi)b̂ĥ0
(Xi, Zi)Î2i + 1√

N

∑N
i=1 Di

∂q
∂h1

(h0i, Pi)R̂ĥ0
(Xi, Zi)Î2i

Using continuity of ∂q
∂h1

(h0i, Pi), compactness of A1∩A2, and the explicit form of b̂ĥ0
, and R̂ĥ0

, we
can show that

bqh0P := plimN→∞
1√
N

N∑
i=1

Di
∂q

∂h1

(h0i, Pi)b̂ĥ0
(Xi, Zi)Î2i < ∞

and

plimN→∞
1√
N

N∑
i=1

Di
∂q

∂h1

(h0i, Pi)R̂ĥ0
(Xi, Zi)Î2i = 0

On the other hand, using the equicontinuity lemma once more, we can show that

1

N
√

N

N∑
i=1

Di
∂q

∂h1

(h0i, Pi)
N∑

j=1

ψNh0P (Dj, Yj, Xj, Zj; Xi, Zi)
(
Î2i − I2i

)
= oP (1)

Combining these results, we conclude that

1√
N

∑N
i=1 Di

∂q̂
∂h1

(h̃0i, P̃i)
(
ĥ0(Xi, P̂ (Zi))− h0(Xi, P (Zi))

)
Î1iÎ2i=

AE

1
N
√

N

∑N
i=1

∑N
j=1 Di

∂q
∂h1

(h0i, Pi)ψNh0P (Dj, Yj, Xj, Zj; Xi, Zi)I2i + bqh0P

Next we focus on

N−3/2

N∑
i=1

Di
∂q

∂h1

(h0i, Pi)

[
ψNh0

(− (1−Di)Yi, P (Zi), Xi; P (Zi), Xi

)
+

∂h0(P (Zi), Xi)

∂p
ψnP (Di, Zi; Zi)

]

Since

E[Diε
h0
i |P (Zi), Xi] = E

[−Di(1−Di)Yi + DiE
(
(1−Di)Yi|P (Zi), Xi

)|P (Zi), Xi

]

= E
(
(1−Di)Yi|P (Zi), Xi

)
P (Zi)
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E

�
Di

∂q
∂h1

(h0i,Pi)I2iψNh0

(
−(1−Di)Yi,P (Zi),Xi;P (Zi),Xi

)�
=

K(0)

h
dX+2
Nh0

E
n

∂q
∂h1

(h0i,Pi)I2ie2[Mh
pN (Pi,Xi)]

−1e′1E[Diεi|P (Zi),Xi]
o

=
K(0)

hdX+2
Nh0

E

{
∂q

∂h1

(h0i, Pi)I2ie2[M
h
pN(Pi, Xi)]

−1e′1P (Zi)(1−Di)Yi

}

Using E
{

∂q
∂h1

(h0i, Pi)e2[M
h
pN(Pi, Xi)]

−1e′1P (Zi)(1−Di)Yi

}
< ∞, and Nh2dX+4

Nh0
→∞, we get that

N−3/2
∑N

i=1 Di
∂q
∂h1

(h0i, Pi)I2iψNh0

(−(1−Di)Yi, P (Zi), Xi; P (Zi), Xi

)
= op(1). On the other hand,

E[Diε
P
i |Zi,Xi]=E

[
Di−DiE

(
Di|Zi

)
|Zi,Xi

]
=P (Zi)

(
1−P (Zi)

)
, so that

E
n

Di
∂q

∂h1
(h0i,Pi)

∂h0(P (Zi),Xi)

∂p
I2iψNP (Di,Zi;Zi)

o
=

K(0)

h
dz
NP

E

�
∂q

∂h1
(h0i,Pi)

∂h0(P (Zi),Xi)

∂p
I2ie1[MP

pN (Zi)]
−1e′1P (Zi)

(
1−P (Zi)

)�

Combining E
{

∂q
∂h1

(h0i, Pi)
∂h0(P (Zi),Xi)

∂p
I2ie1[M

P
pN(Zi)]

−1e′1P (Zi)
(
1− P (Zi)

)}
< ∞ and Nh2dz

NP →
∞, we also conclude that N−3/2

∑N
i=1 Di

∂q
∂h1

(h0i, Pi)I2i
∂h0(P (Zi),Xi)

∂p
ψNP (Di, Zi; Zi) = op(1). Next,

we look at the terms with different indices:

N−3/2
PN

i=1

P
j 6=i Di

∂q
∂h1

(h0i,Pi)I2iψNh0

(
−(1−Dj)Yj ,P (Zj),Xj ;P (Zi),Xi

)
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PN
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P
j 6=i g̃1N (S̃i,S̃j)

where

g̃1N (S̃i,S̃j)=

�
Di
2

∂q
∂h1

(h0i,Pi)I2iψNh0
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)
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2

∂q
∂h1

(h0j ,Pj)I2jψNh0

(
−(1−Di)Yi,P (Zi),Xi;P (Zj),Xj

)�

and S̃i = (Di, Yi, Zi, Xi). Using the definition of εh0 , iterated law of expectations and the inde-
pendence of observations from one another, one could show that the expectation of each term in
this sum is 0. Moreover, since Mh

p (Pi, Xi) is nonsingular, ∂q/∂h1 is continuous, K is 0 outside a

compact set, and var(Y ) < ∞, and Nh
2(dX+2)
Nh0

→ ∞, E
(
g̃1N(S̃i, S̃j)

2
)

= o(N). Therefore by the
Hoeffding, Powell, Stock and Stoker lemma,
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∑
j 6=i Di

∂q
∂h1

(h0i, Pi)I2iψNh0

(− (1−Dj)Yj, P (Zj), Xj; P (Zi), Xi

)
=AE

1√
N

∑N
i=1 E

[
Dj

∂q
∂h1

(h0j, Pj)I2jψNh0

(− (1−Di)Yi, P (Zi), Xi; P (Zj), Xj
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]

Similarly,
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∑
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∂q
∂h1

(h0i, Pi)
∂h0

∂P
(P (Zi), Xi)ψNP
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Dj, Zj, Zi

)
=AE

1√
N

∑N
i=1 E
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DjI2j

∂q
∂h1

(h0j, Pj)
∂h0

∂P
(P (Zj), Xj)ψNP

(
Di, Zi, Zj

)|Di, Zi, Xi

]

Therefore,

1√
N

∑N
i=1 Di

∂q̂
∂h1

(h̃0i, P̃i)
[
ĥ0(Xi, P̂ (Zi))− h0(Xi, P (Zi))

]
Î1iÎ2i =AE

1√
N

∑N
i=1 E

[
Dj

∂q
∂h1

(h0j, Pj)I2jψNh0

(− (1−Di)Yi, P (Zi), Xi; Xj, P (Zj)
)|Yi, Di, Xi, Zi

]
+

1√
N

∑N
i=1 E

[
Dj

∂q
∂h1

(h0j, Pj)I2j
∂h0

∂P
(P (Zj), Xj)ψNP

(
Di, Zi; Xj, Zj

)|Yi, Di, Xi, Zi

]
+ bqh0P
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B.3 Step 3:

By Appendix C.3, we know that

1√
N

∑N
i=1 Di

(
q̂(h0i, Pi)− q(h0i, Pi)

)
Î1iÎ2i =AE

1√
NN

∑N
i=1

∑N
j=1

Di

P (Zi)
[M q

pN(h0i, Pi)]
−1

[(
(h1j ,Pj)−(h0i,Pi)

hNq

)Qp
]′

1
h2

Nq
Kq

(
(h1j ,Pj)−(h0i,Pi)

hNq

)
εq

jI1iI2i + bq

where εq
j = DjYj − E

[
DjYj|h1

(
Xj, P (Zj)

)
, P (Zj)

]
As in the previous two steps, we first focus on

1√
NN

∑N
j=1

Dj

P (Zj)
[M q

pN(h0j, Pj)]
−1

[(
(h1j ,Pj)−(h0j ,Pj)

hNq

)Qp
]′

1
h2

Nq
Kq

(
(h1j ,Pj)−(h0j ,Pj)

hNq

)
εq

jI1jI2j

plim 1
N

∑N
i=1

Di

P (Zi)
e1[M

q
pN(h0i, Pi)]

−1

[(
(h1i,Pi)−(h0i,Pi)

hNq

)Qp
]′

1
h2

Nq
Kq

(
(h1i,Pi)−(h0i,Pi)

hNq

)
εq

i I1iI2i

= E

[
Di

P (Zi)
e1[M

q
pN(h0i, Pi)]

−1

[(
(h1i,Pi)−(h0i,Pi)

hNq

)Qp
]′

1
h2

Nq
Kq

(
(h1i,Pi)−(h0i,Pi)

hNq

)
εq

i I1iI2i

]
< ∞

and Nh4
Nq →∞. Therefore,

plim 1
N
√

Nh2
Nq

∑N
i=1

Di

P (Zi)
e1[MpN(h0i, Pi)]

−1

[(
(h1i,Pi)−(h0i,Pi)

hNq

)Qp
]′

K
(

(h1i,Pi)−(h0i,Pi)
hNq

)
εq

i I1iI2i = 0

Next, we focus on the sum containing different indices. Using the assumption that the observations
are independent, the definition of εq and the law of iterated expectations, we first observe that
for i 6= j,

E

{
Di

P (Zi)
e1[M

q
pN(h0i, Pi)]

−1

[(
(h1j, Pj)− (h0i, Pi)

hNq

)Qp
]′

1

h2
Nq

Kq

(
(h1j, Pj)− (h0i, Pi)

hNq

)
εq

jI1iI2i

}
= 0

We define Si := (Di, Yi, Xi, Zi), and

gN(Si, Sj) := Di

2h2
NqP (Zi)

e1[M
q
pN(h0i, Pi)]

−1

[(
(h1j ,Pj)−(h0i,Pi)

hNq

)Qp
]′

Kq
(

(h1j ,Pj)−(h0i,Pi)

hNq

)
εq

jI1iI2i

+
Dj

2h2
NqP (Zj)

e1[M
q
pN(h0j, Pj)]

−1

[(
(h1i,Pi)−(h0j ,Pj)

hNq

)Qp
]′

Kq
(

(h1i,Pi)−(h0j ,Pj)

hNq

)
εq

i I1jI2j

If E
[
gN(Si, Sj)

2
]

= o(N), then by the Hoeffding, Powell, Stock and Stoker lemma

[
1√

N(N − 1)

N∑
i=1

∑

j 6=i

gN(Si, Sj)

]
=AE 1√

N

N∑
i=1

2E[gN(Si, Sj)|Si]

36



We know that Nh2p
Nq → c for some constant c, and that p > 2. Thus, Nh4

Nq →∞. Combining this
with the nonsingularity of M q

p (h0i, Pi), the fact that P (Zi) is almost surely bounded away from 0,

var(Y ) < ∞, and that the kernel function is zero outside a compact set, we get E
[
gN(Si, Sj)

2
]

=
o(N). On the other hand,

E[gN (Si,Sj)|Si]=
1
2
E

(
Dj

P (Zj)
e1[Mq

pN (h0j ,Pj)]
−1

"�
(h1i,Pi)−(h0j ,Pj)

hNq

�Qp
#′

1

h2
Nq

Kq

�
(h1i,Pi)−(h0j ,Pj)

hNq

�
εq
i I1jI2j |Di,Yi,Xi,Zi

)

This equality follows from the fact that E
[
εq

j |h1j, Pj, Di, Yi, Xi, Zi

]
= E

[
εq

j |h1j, Pj

]
= 0. Thus,

1√
N

N∑
i=1

Di

(
q̂(h0i, Pi)− q(h0i, Pi)

)
=AE bq +

1√
N

N∑
i=1

E

{
Dj

P (Zj)
e1[M

q
pN(h0j, Pj)]

−1I1jI2j

×
[(

(h1i, Pi)− (h0j, Pj)

hNq

)Qp
]′

εq
i

h2
Nq

Kq

(
(h1i, Pi)− (h0j, Pj)

hNq

)
|Di, Yi, Xi, Zi

}

B.4 Step 4:

Here we study the numerator of the first term of equation (10).

1√
N

∑N
i=1

[
(1−Di)Yi + Diq(h0i, Pi)− E(Y0|A1 ∩ A2)

]
Î1iÎ2i

Let A := A1 ∩ A2 and

δA(Xi, Zi) := (1−Di)Yi + Diq(h0i, Pi)− E(Y0|A1 ∩ A2)

For Ĩ1 ∈ I1, Ĩ2 ∈ I2 such that Ĩ1i 6= I1i or Ĩ2i 6= I2i, E[δA(Xi, Zi)Ĩ1iĨ2i] 6= 0. But with probability
one Î1iÎ2i equals

I1iÎ2i + [σ̂1(Xi, Zi)]
−1J̃−

(
fX,Z(Xi,Zi)−q01

σ̂1(Xi,Zi)

)
1{f̂(Xi, Zi) > fX,Z(Xi, Zi)}

[
f̂(Xi, Zi)− fX,Z(Xi, Zi)

]
Î2i

+[σ̂1(Xi, Zi)]
−1J̃+

(
fX,Z(Xi,Zi)−q01

σ̂1(Xi,Zi)

)
1{f̂(Xi, Zi)) < fX,Z(Xi, Zi)}

[
f̂(Xi, Zi)− fX,Z(Xi, Zi)

]
Î2i

where J̃−(u) = 1{−1 ≤ u < 0}, J̃+(u) = 1{0 ≤ u < 1}, and σ̂1(Xi, Zi) :=
∣∣∣f̂(Xi, Zi)− fX,Z(Xi, Zi)

∣∣∣.
Similarly, for f ∈ H1, define, σ̃1(Xi, Zi) := |f(Xi, Zi)− fX,Z(Xi, Zi)|, L̃1i = 1{f(Xi, Zi) >
fX,Z(Xi, Zi)}. Then for Ĩ2 ∈ I2,

N−3/2
∑N

i=1

∑N
j=1 δA(Xi, Zi)Ĩ2iL̃1i[σ̃1(Xi, Zi)]

−1J̃−
(

fX,Z(Xi,Zi)−q01

σ̃1(Xi,Zi)

)

×
(

1
h̃d

N1

K̃1

(
(Xj ,Zj)−(Xi,Zi)

h̃N1

)
− E

[
1

h̃d
N1

K̃1

(
(Xj ,Zj)−(Xi,Zi)

h̃N1

)
|Xi, Zi

])

+N−3/2
PN

i=1

PN
j=1 δA(Xi,Zi)Ĩ2iL̃1i[σ̃1(Xi,Zi)]

−1J̃−
�

fX,Z (Xi,Zi)−q01
σ̃1(Xi,Zi)

��
E

�
1

h̃d
N1

K̃1

�
(Xj,Zj)−(Xi,Zi)

h̃N1

�
|Xi,Zi

�
−fX,Z(Xi,Zi)

�
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The first of these is an order one degenrate U-process which satisfies the conditions of the equicon-
tinuity lemma. Therefore the first term is op(1) for each element of the family of the functions we
consider. As for the second term, HIT claim that they can control the bias arising from that by
p1-smoothness of the density fX,Z . I don’t necessaruily understand their comment. But using the
rates of convergence in Silverman’s article we can deal with this term as well. On the other hand,
the analysis of the term involving J̃+ is symmetric. The last step in this section is to repeat these
arguments for

1√
N

N∑
i=1

δA(Xi, Zi)I1i[Î2i − I2i]

B.5 Step 5:

1

N

N∑
i=1

Î1iÎ2i =
1

N

N∑
i=1

I1iI2i +
1

N

N∑
i=1

Î1i[Î2i − I2i] +
1

N

N∑
i=1

I2i[Î1i − I1i]

By the law of large numbers, the first term on the right hand side converges to P (A1 ∩ A2).
N−1|∑N

i=1 Î1i[Î2i− I2i]| ≤ N−1
∑N

i=1 |Î2i− I2i|. Our trimming assumptions guarantee that E|Î2i−
I2i| approaches 0 as N tends to infinity. Therefore, for each fixed κ > 0,

P

(
N−1

∣∣∣∣∣
N∑

i=1

Î1i[Î2i − I2i]

∣∣∣∣∣ > κ

)
≤ P

(
N−1

N∑
i=1

|Î2i − I2i| > κ

)
≤ E|Î2i − I2i|

κ
→ 0

Similarly, we can show that the last term is op(1).

C Additional Estimation Results

(PRELIMINARY AND INCOMPLETE)

C.1 Asymptotic linearity of P̂ (Z):

Note P (Z) = E(D = 1|Z) and thus fits into the form in HIT without any change. So under the
assumptions of Theorem 3 of HIT, with Y = D, X = Z, and dz = dim(Z), for any 0 ≤ p < pz

the local polynomial regression estimation will yield

[
P̂ (z)− P (z)

]
Î(z) =

1

n

n∑
j=1

ψnP (Zi, Di; z) + b̂P (z) + R̂P (z)

38



where n−1/2
∑n

i=1 R̂P (Zi) = op(1), plimn→∞n−1/2
∑n

i=1 b̂P (Zi) = bP < ∞,
E[ψnP (Zi, Di; Z|Z = z] = 0.

ψnP (Zi, Di; z) = 1

hdz
n

e1[Mp,n(z)]−1

[(
Zi−z
hn

)Qp
]′

K
(

Zi−z
hn

)
εD

i I(z)

b̂P (z) = hpz
n e1[Mpn(z)]−1Î(z)

pz∑
s=p+1

[∫
uQ(0) · uQ(s)P (s)(z)

′ · uQ(pz−s)K(u)du,

...,

∫
uQ(p) · uQ(s)P (s)(z)

′ · uQ(pz−s)K(u)du

]
f

(pz−s)
Z (z)′

where P (s) denotes the s-th order derivative of P , Î(z) = 1{f̂Z(z) ≥ q0Z} and I(z) = 1{fZ(z) ≥
q0Z}. And if p = p, the estimator has the same form, but b̂P (z) = o(hp

n).

C.1.1 Asymptotic Linearity of P̂ (Z) with different trimming:

The above formulation involves trimming based on the estimated density of Z. This is fine for this
stage. But when we later estimate h0 and h1 we need to make sure that the joint density of X and
Z is bounded away from 0. If in the first stage, our trimming function is 1{f̂Z(z) ≥ q01}, this only
guarantees that the true density of Z evaluated at z is above q01 with probability approaching to
1. If we have an (X,Z) value, say (x, z) such that 1{f̂Z(z) ≥ q01} = 1, and hence fZ(z) ≥ q01, it
is still possible that fX,Z(x, z) = 0. Therefore, even though, E(D|X) = E(D|Z) I will trim based
on the estimated density of (X, Z). If we change certain assumptions required for Theorem 3 of
HIT everything goes through. The required changes are as follows:

1) For the estimated density of (X,Z) to converge uniformly in probability to the true density
of (X, Z) we need fX,Z to be uniformly continuous.

2) For Lemma 4 to go through for fX,Z we need to assume that fX,Z is p̃-smooth, with
p̃ > dim(X,Z), and that fX,Z has a continuous Lebesgue density ff in a neighborhood of q01 with
ff (q01) > 0. So all this means that Assumption 4 in HIT has to be stated as: Trimming has to
be p̃-nice on S with p̃ > dim(X, Z).

Given these changes, everything goes through, and we get

[
P̂ (z)− P (z)

]
Î1(x, z) =

1

n

n∑
j=1

ψnP (Xi, Zi, Di; x, z) + b̂P (z) + R̂P (z)

where n−1/2
∑n

i=1 R̂P (Xi, Zi) = op(1), plimn→∞n−1/2
∑n

i=1 b̂P (Xi, Zi) = bP < ∞,
E[ψnP (Xi, Zi, Di; X,Z|X = x, Z = z] = 0.

ψnP (Xi, Zi, Di; x, z) = 1

hdz
n

e1[Mp,n(z)]−1

[(
Zi−z
hn

)Qp
]′

K
(

Zi−z
hn

)
εD

i I1(x, z)
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b̂P (x, z) = hpz
n e1[Mpn(z)]−1Î1(x, z)

pz∑
s=p+1

[∫
uQ(0) · uQ(s)P (s)(z)

′ · uQ(pz−s)K(u)du,

...,

∫
uQ(p) · uQ(s)P (s)(z)

′ · uQ(pz−s)K(u)du

]
f

(pz−s)
Z (z)′

where P (s) denotes the s-th order derivative of P , Î1(x, z) = 1{f̂X,Z(x, z) ≥ q0} and I1(x, z) =

1{fX,Z(x, z) ≥ q0}. And if p = p, the estimator has the same form, but b̂P (z) = o(hp
n).

Remark: We are estimating E(D|Z). To compute and control the bias we have to assume
that this function and the marginal density of Z is sufficiently smooth, in fact ”the order” of
smoothness has to be greater than the dimension of Z. But for the trimming based on (X,Z) to
work, we need to assume that the joint distribution of (X,Z) is smooth with order of smoothness
greater than the dimension of (X, Z) which is larger than the dimension of Z. Keep in mind that
the latter assumption implies the former.

On the other hand, when we do the local polynomial regression estimation of h0 and h1, we are
going to assume that (X,P (Z)) has a smooth Lebesgue density. This implies that Prob({(x, z) :
P (z) = a}) = 0 for each a ∈ [0, 1]. If we define E := {z ∈ supp(Z) : ∃(x, z) ∈ supp(X,Z)} then
for almost every z ∈ E, |P ′(z)| > 0. Using this, continuity24 of P ′, continuity of fX,Z and the
Lebesgue Differentiation Theorem, we could show that fX,Z(x0, z0) > 0 ⇒ fX,P (Z)(x0, P (z0)) > 0.
So based on this, we don’t need to trim again in the second stage, i.e. the estimation of h0 and
h1.

C.2 Estimating h0(x, P (z))

h1(x, p) =
∂

∂p
E(DY |X = x, P (Z) = p)

h0(x, p) = − ∂

∂p
E((1−D)Y |X = x, P (Z) = p)

h−1
1 h0(x0) = {x|∃p, h1(x, p) = h0(x, p)}

P (z) = E(D|Z = z)

q(t1, t2) = E(Y |D = 1, h1(X, P (Z)) = t1, P (Z) = t2)

This appendix has two goals: first to show that the local polynomial regression estimator of h0

is asymptotically linear with trimming; second, to show that its derivative with respect to p is
uniformly consistent for the derivative of h0 with respect to p.
To show that local polynomial regression estimator of h0 is asymptotically linear with trimming,
we follow arguments similar to those in the proof of theorem 3 of Heckman, Ichimura and Todd.

24When we do local polynomial regression estimation of E(D|Z) we need to assume this anyway.
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Write Y = m+ ε = Xp(x0)β
∗
p(x0)+ rp(X, x0)+ ε, where ε = Y −E(Y |X). In our case −(1−D)Y

will play the role of Y in HIT, and the vector (P (Z), X) will play the role of X in HIT. In the first
part of this section, we will use Ỹ and S to denote (1−D)Y and (P (Z), X). Just as HIT, we will
consider the case, where p, the order of the polynomial terms included, is less than the underlying
smoothness, p, of the regression function. To do that partition, Sp(s0) = [Sp(s0), Sp(s0)] and

β∗p(s0) = [β∗p(s0)
′, β

∗
p(s0)

′]′. Then,

[β̂p(s0)− β∗p(s0)]Î10 = H[M̂pn(s0)]
−1n−1H ′Sp(s0)

′W (s0)εÎ10

+ H[M̂pn(s0)]
−1n−1H ′Sp(s0)

′W (s0)Sp(s0)β
∗
p(s0)Î10

+ H[M̂pn(s0)]
−1n−1H ′Sp(s0)

′W (s0)rp(s0)Î10

where Î10 = 1{(x, z) : f̂X,Z(x0, z0) ≥ q01}, with s0 = (P (z0), x0). We need to show that e2[β̂p(s0)−
β∗p(s0)]Î10 is asymptotically linear.

C.2.1 First Step

As our first step, we would like to claim that

e2H[M̂pn(s0)]
−1n−1H ′Sp(s0)

′W (s0)εÎ10 = e2H[Mpn(s0)]
−1n−1H ′Sp(s0)

′W (s0)εI0 + R̂1(s0)

where e2 = (0, 1, 0, ..., 0) and 1/
√

n
∑n

i=1 R̂1(Si, Xi, Zi) = op(1) Note that e2H = 1
hn

e2. Let

γn0(Sj) = e2[Mpn(Sj)]
−1, γ̂n(Sj) = e2[M̂pn(Sj)]

−1, A1 = {(x, z) : fX,Z(x, z) ≥ q01 − εf > 0}, and

Γn = {γn(x)| sup
x∈A1

|γn(x)− e2[Mpn(x)]−1| ≤ εγ}

H1 = {f : sup
(x,z)∈supp(X,Z)

|f(x, z)− fX,Z(x, z)| ≤ εf}

I1 = {I((x, z) ∈ Ã) : Ã = {(x, z) : f(x, z) ≥ q01} for some f ∈ H1}

G1n =



gn : gn(εi, Si, Sj, Xj, Zj) = n−3/2γn(Sj)

(
1

hn

)d+1
[(

Si − Sj

hn

)Qp
]T

εiK

(
Si − Sj

hn

)
Ĩ1j





Explanation: e2H = 1/(hn)e2, so this is why we have (1/(hn)d+1) as opposed to (1/(hn)d)
Also let gn0 be the same as gn except with γn replaced by γn0, and Ĩ1j replaced by I1j.

And define ĝn similarly with γ̂n and Îj replacing γn and Ĩ1j, respectively. With this new no-

tation 1/
√

n
∑

i R̂1(Sj, Xj, Zj) =
∑

i

∑
j[ĝn(εi, Si, Sj, Xj, Zj) − gn0(εi, Si, Sj, Xj, Zj)]. To show

that this sum is op(1), we first need to show that
∑

j

∑
i gn(εi, Si, Sj, Xj, Zj) is equicontinuous

over G1n in a neighborhood of gn0(εi, Si, Sj, Xj, Zj) and that with probability approaching to 1,
ĝn(εi, Si, Sj, Xj, Zj) lies within the neighborhood over which equicontinuity is established. For
the first step, we try using the third lemma. To apply that lemma, we need to have a degenerate
U-process, and

∑
i

∑
j gn(εi, Si, Sj, Xj, Zj) is not degenerate.
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First, we split the
∑

i

∑
j gn(εi, Si, Sj, Xj, Zj) process into two parts:∑

i

∑
j gn(εi, Si, Sj, Xj, Zj) =

∑
i

∑
j 6=i gn(εi, Si, Sj, Xj, Zj) +

∑
i gn(εi, Si, Si, Xi, Zi). The latter

process is symmetric. To see that it is also degenerate, we observe that
(

Si−Si

hn

)Qp

is a row vector

whose first component equals 1 and all other components equal 0.

gn(εi, Si, Si, Xi, Zi) = n−3/2γn(Si)e
T
1 εi

(
1

hn

)d+1

K(0)Ĩ1i

E[gn(εi, Si, Si, Xi, Zi)] = n−3/2E[γn(Si)Ĩ1ie
T
1 E(εi|Si, Xi, Zi)]

(
1

hn

)d+1

K(0)

E(εi|Si, Xi, Zi) = E(εi|P (Zi), Xi, Zi) = E
[
(1−D)g(ν(X, D), ε)

−E
(
(1−D)g(ν(X, D), ε)|X, P (Z)

)|X, Z, P (Z)
]

= E
[
(1−D)g(ν(X,D), ε)|X, Z, P (Z)

]

−E
(
(1−D)g(ν(X,D), ε)|X, P (Z)

)

The last equality holds because E
(
(1 −D)g(ν(X,D), ε)|X, P (Z)

)
is measurable with respect to

σ(X,Z).

E
[
(1−D)g(ν(X, D), ε)|X, Z, P (Z)

]
= P (D = 0|X, Z, P (Z))E[g(ν(X, 0), ε)|D = 0, X, Z, P (Z)]

= P (U > P (Z)|X, Z, P (Z))E[g(ν(X, 0), ε)|D = 0, X, Z, P (Z)]

= (1− P (Z))E[g(ν(X, 0), ε)|D = 0, X, P (Z)]

The independence of ε from Z was used in writing the last equality. On the other hand,

E
(
(1−D)g(ν(X, D), ε)|X,P (Z)

)
= P (D = 0|X,P (Z))E[g(ν(X, 0), ε)|D = 0, X, P (Z)]

= (1− P (Z))E[g(ν(X, 0), ε)|D = 0, X, P (Z)]

Therefore, both E(εi|Si, Xi, Zi) and E[gn(εi, Si, Si, Xi, Zi)] are 0.

Next, define g0
n :=

gn(εi,Si,Sj ,Xj ,Zj)+gn(εj ,Sj ,Si,Xi,Zi)

2
, Li := (εi, Xi, Zi, P (Zi)), φn(Li) := E[g0

n(Li, l)|Li]
= E[g0

n(l, Li)|Li], and g̃0
n(Li, Lj) = g0

n(Li, Lj)−φn(Li)−φn(Lj) as in HIT, so that
∑

i

∑
j 6=i g

0
n(Li, Lj) =∑

i

∑
j 6=i g̃

0
n(Li, Lj) +

∑n
i=1 2(n − 1)φn(Li). To show equicontinuity of our original process we

need to show that that each of the processes
∑n

i=1 gn(εi, Si, Si, Xi, Zi),
∑

i

∑
j 6=i g̃

0
n(Li, Lj) and∑n

i=1 2(n − 1)φn(Li) are degenerate. We already verified that the first of these is degenerate.
Next we show that the latter two are degenerate. Observe that

φn(Li) =
1

2

(
1

hn

)d+1

n−3/2εiE


γn(Sj)Ĩ(Xj, Zj)

((
Si − Sj

hn

)Qp
)T

K

(
Si − Sj

hn

)
|εi, Xi, Zi, P (Zi)




=
1

2

(
1

hn

)d+1

n−3/2εiE


γn(Sj)Ĩ(Xj, Zj)

((
Si − Sj

hn

)Qp
)T

K

(
Si − Sj

hn

)
|εi, Xi, Zi
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To see that φn and g̃0
n are degenerate, first note that the conditional expectation term that

appears in φn(Li) can be thought of some function, say ϕ(εi, Xi, Zi). Then

E(φn(Li)|Lj) =
1

2

(
1

hn

)d+1

n−3/2E (εiϕ(εi, Xi, Zi)|εj, Xj, Zj)

=
1

2

(
1

hn

)d+1

n−3/2E(εiϕ(εi, Xi, Zi)) = 0 = E(φn(Li))

Thus, all the processes are degenerate, and lemma 3 is applicable to each of them. Lemma 3 looks
at a degenerate U-process over a separable class of functions Ψ ⊂ L2 and concludes that as long as
3 conditions hold, for each η > 0, there exists a δ > 0 such that limn→∞ P

(
sup{|Un(ψ1n−ψ2n)| >

η : ||ψ1n − ψ2n||2 ≤ δ}) = 0.
HIT assume that the limit of the Mpn(s) matrix is positive definite. Therefore, Mpn(s) matrix

is positive definite, and hence invertible, when n is large. Based on this argument they say that
the norm of γn will be finite for each γn ∈ Γn. Convinced with this argument I started verifying
the three conditions of the lemma for each process.

Let I∗1i = 1{fX,Z(Xi, Zi) ≥ q01 − εf}. Then |gn(εi, Si, Si, Xi, Zi)| ≤ n−3/2C|eT
1 ||εi|K(0)I∗1i, and

n∑
i=1

E

[
n−3C2ε2

i

(
1

hn

)2(d+1)

K(0)2I∗1i

]
≤ C2K(0)2E(ε2)

(
1

nh
(d+1)
n

)2

< ∞

This shows that condition (i) of the equicontinuity lemma holds for the
∑

i gn(εi, Si, Si, Xi, Zi)
process if nhd+1

n → ∞. Condition (ii) holds under the same assumption by the dominated con-
vergence theorem.

Next, we recall that K(·) is zero outside a compact set, so that when
∣∣∣
∣∣∣Si−Sj

hn

∣∣∣
∣∣∣ is ”too large”

K
(

Si−Sj

hn

)
= 0. This implies that there exist C1, C2 such that any element of

[(
Si−Sj

hn

)Qp
]T

K
(

Si−Sj

hn

)

is bounded by C1

(
1

hn

)d

1{||Si − Sj|| ≤ C2hn}. Then

|gn(εi, Si, Sj, Xj, Zj)| ≤ n−3/2CC11{||Si − Sj|| ≤ C2hn}
(

1

hn

)d+1

|εi|I1(Xj, Zj)
∗

Thus, as long as nh
(d+1)
n →∞, conditions (i) and (ii) are satisfied for the process∑

i

∑
j 6=i gn(εi, Si, Sj, Xj, Zj) as well.

|2nφn(εi, Xi, Zi)| ≤ 2n−1/2C|εi|

n∑
i=1

4n−1C2E
(
ε2

i

)
= 4C2E

(
ε2

i

)
< ∞
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Thus, the first condition of Lemma 3 of HIT holds for the 2nφ process. On the other hand,
since E (ε2

i ) < ∞, ε2
i 1{|εi| >

√
n δ

2C
} → 0 as n → ∞, almost everywhere. Moreover, ε2

i 1{|εi| >√
n δ

2C
} ≤ ε2

i . Therefore, we could apply the Dominated Convergence Theorem to get that

∀δ > 0, lim
n→∞

n∑
i=1

4n−1C2E

(
ε2

i 1

{
|εi| >

√
n

δ

2C

})
= 0

Now we move on to verifying condition (iii) of Lemma 3 of HIT for our three processes. First, let
g1

n and g2
n be any two elements of G1n. Then

|g1
n(εi, Si, Sj, Xj, Zj)− g2

n(εi, Si, Sj, Xj, Zj)| ≤ n−3/2C11{||Si − Sj|| ≤ C2hn}
(

1

hn

)d+1

|εi| ×
(|I1

1j − I2
1j| ||γ1

n(Sj)||+ |γ1
n(Sj)− γ2

n(Sj)|I2
1j

)

≤ n−3/2C11{||Si − Sj|| ≤ C2hn}
(

1

hn

)d+1

|εi| ×
(|I1

1j − I2
1j| ||γ1

n(Sj)||+ |γ1
n(Sj)− γ2

n(Sj)|I∗1j

)

Similarly,

|2nφ1(Zi)− 2nφ2(Zi)| =
(

1

hn

)d+1

n−1/2|εi|
∣∣∣∣∣∣
E




(
Ĩ1
1j(γ

1
n(Xj)− γ2

n(Xj)) + (Ĩ1
1j − Ĩ2

1j)γ
2
n(Xj)

) ((
Xi −Xj

hn

)Qp
)T

K

(
Xi −Xj

hn

)
|Xi




∣∣∣∣∣∣
Our function families are simpler - i.e. we don’t have to worry about A. Other than that the
only difference between HIT and this, is that the exponent of hn is d + 1 instead of d in our
case. They first verify that condition (iii) of lemma 3 is satisfied by Γn, A and I1. Then they say
since nhd

n → ∞ the condition is also satisfied for {gn(εi, Xi, Xj)}, {gn(εi, Xi, Xi)} and {2nφ(Z)}
families. Our Γn and I1 is the same as theirs, and we don’t need to worry about A . Therefore,
if we change assumptions 2 and 3 of HIT to p > d + 1 and nhd+1

n / log n →∞, we will be fine.
The arguments so far showed equicontinuity of the process

∑n
i=1

∑n
j=1 gn(εi, Si, Sj, Xj, Zj) over

G1n in a neighborhood of gn0(εi, Si, SjXj, Zj). Next we need to argue that ĝn(εi, Si, Sj, Xj, Zj)

lies in that neighborhood. Given the modified assumption 3, this will be true if supx ||M̂pn(s) −
Mpn(s)|| → 0 where limn→∞ infs det (Mpn(s)) > 0. Lemmas 5 and 6 of HIT take care of that.

C.2.2 Second Step:

Next, we move on to the term that will contain the bias:

e2H[M̂pn(s0)]
−1n−1HT ST

p (s0)W (s0)Sp(s0)β
∗
p (s0)Î10

= e2[M̂pn(s0)]
−1Î10

p∑

k=p+1

n−1

(
1

hn

)d+1 p∑
i=1

[(
Si − s0

hn

)Qp
]T

(Si − s0)
Q(k)[m(k)(s0)]

T K

(
Si − s0

hn

)

44



We add and subtract

e2[M̂pn(s0)]
−1

p∑

k=p+1

1

hd+1
n

E





[(
Si − Sj

hn

)Qp
]T

(Si − Sj)
Q(k)K

(
Si − Sj

hn

)
|Sj = s0



 [m(k)(s0)]

T Î10

This gives us three terms. But the difference of the two terms is handled in the same way as in
lemma 2. In particular, we take γn, Γn, and I1 as before and define

gn(Si, Sj, Xj, Zj) = n−3/2γn(Sj)

(
1

hn

)d+1
[(

Si − Sj

hn

)Qp
]T

(Si − Sj)
Q(k)K

(
Si − Sj

hn

)
[m(k)(Sj)]

T Ĩ1j

−n−3/2γn(Sj)

(
1

hn

)d+1

E




[(
Si − Sj

hn

)Qp
]T

(Si − Sj)
Q(k)K

(
Si − Sj

hn

)
|Sj


 [m(k)(Sj)]

T Ĩ1j

Letĝn(Si, Sj, Xj, Zj) and gn0(Si, Sj, Xj, Zj) be defined in the same way as before. Moreover,
let G2n := {gn(Si, Sj, Xj, Zj)|γn(Sj) ∈ Γn, Ĩ1j ∈ I1}. Then going through the same steps

as in lemma 2 we can show that 1/
√

n
∑n

j=1 R̂21(Sj, Xj, Zj) =
∑n

i=1

∑n
j=1[ĝn(Si, Sj, Xj, Zj) −

gn0(Si, Sj, Xj, Zj)] = op(1).
Then we deal with the term

e2[M̂pn(s0)]
−1

p∑

k=p+1

1

hd+1
n

E





[(
Si − Sj

hn

)Qp
]T

(Si − Sj)
Q(k)K

(
Si − Sj

hn

)
|Sj = s0



 [m(k)(s0)]

T Î10

which in turn equals

e2

(
[M̂pn(s0)]

−1 − [Mp(s0)]
−1

)
Î10

·∑p
k=p+1

1

hd+1
n

E

{[(
Si−Sj

hn

)Qp
]T

(Si − Sj)
Q(k)K

(
Si−Sj

hn

)
|Sj = s0

}
[m(k)(s0)]

T

+e2[Mp(s0)]
−1Î10

∑p
k=p+1

1

hd+1
n

E

{[(
Si−Sj

hn

)Qp
]T

(Si − Sj)
Q(k)K

(
Si−Sj

hn

)
|Sj = s0

}
[m(k)(s0)]

T

The first expression can be treated in the same way as in lemma 2. The last expression equals

hp−1
n e2[Mp(s0)]

−1×∑p
k=p+1

[∫
uQ(0) · uQ(k)m(k)(s0)

′ · uQ(p−1)K(u)du, ...,
∫

uQ(p) · uQ(k)m(k)(s0)
′ · uQ(p−k)K(u)du

]

×f (p−k)(s0)
′Î10

We need

plimn→∞1/
√

n
∑n

i=1 hp−1
n e2[Mp(Si)]

−1×∑p
k=p+1

[∫
uQ(0) · uQ(k)m(k)(Si)

′ · uQ(p−1)K(u)du, ...,
∫

uQ(p) · uQ(k)m(k)(Si)
′ · uQ(p−1)K(u)du

]

×f (p−k)(Si)
′Î(Xi, Zi) = b < ∞
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All the terms involving (Si, Xi, Zi) are bounded with probability 1. Thus, if nh
2(p−1)
n → a < ∞

then we are OK. So I have to modify assumption 3.

C.2.3 Third Step:

Here we focus on the e2H[M̂pn(s0)]
−1n−1HT ST

p (s0)W (s0)rp(s0)Î10 term. Since e2H = 1/hne2, this
term equals

1

hn

e2[M̂pn(s0)]
−1n−1HT ST

p (s0)W (s0)rp(s0)Î10

In the proof of lemma 8, HIT show that n−1HT XT
p (s0)W (s0)rp(s0) = op(h

p+1
n ). On the other

hand, since Mpn(s0) converges to a positive definite matrix for each s0 for which f(s0) > 025 ,

and since sups ||M̂pn(s)−Mpn(s)|| → 0, sups[M̂pn(s)]−1 will be finite for large n. Combining these
arguments we get that

e2H[M̂pn(s0)]
−1n−1HT ST

p (s0)W (s0)rp(s0)Î10 = op(h
p
n)

Under these assumptions given in the Appendix B,

[
ĥ0(p, x)− h0(p, x)

]
Î1(x, z) =

1

N

N∑
j=1

ψNh0(P (Zi), Xi, DiYi; x, z) + b̂h0(p, x, z) + R̂h0(p, x, z)

where N−1/2
∑N

i=1 R̂h0(P (Zi, Xi, Zi) = op(1), plimN→∞N−1/2
∑N

i=1 b̂h0(P (Zi), Xi, Zi) = bh0 < ∞,
and E[ψNh0(P (Zi), Xi, DiYi; P (Zi), Xi, Zi|P (Zi) = p,Xi = x, Zi = x] = 0, p = P (z). For the case
when ĥ0 is local polynomial regression estimator of h0 of order 0 ≤ p < p:

ψNh0(Si,−(1−Di)Yi; p, x, z) = 1

hd+1
N

e2[Mp,N(s)]−1

[(
Si−s
hN

)Qp
]T

K
(

Si−s
hN

)
εh0

i I1(x, z)

b̂h0(p, x, z) = hp−1
N e2[Mp,N(s)]−1Î1(x, z)

p∑

k=p+1

[∫
uQ(0) · uQ(k)m(k)(s)

′ · uQ(p−k)K(u)du,

...,

∫
uQ(p) · uQ(k)m(k)(s)

′ · uQ(p−k)K(u)du

]
f (p−k)(s)′

with S := (P (Z), X), εh0
i = −(1−Di)Yi − E[−(1−Di)Yi|P (Zi), Xi] and d = dim(S).

C.2.4 Asymptotic linearity of ĥ0(P̂ (z), x):

To show this, we need to use Lemma 1 of HIT. Recall that

25The previous section argues that,under our assumptions, fX,Z(x0, z0) > 0 implies that fX,P (Z)(x0, P (z0)) > 0.
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Lemma C.1 (HIT) Suppose that:

1. Both P̂ (z) and ĝ(p, t) are asymptotically linear with trimming where

[
P̂ (z)− P (z)

]
I
(
(x, z) ∈ Â1

)
= n−1

n∑
j=1

ψnP (Dj, Zj; x, z) + b̂P (x, z) + R̂P (x, z)

[
ĝ(p, t)− g(p, t)

]
I
(
(x, z) ∈ Â1

)
= n−1

n∑
j=1

ψng(Yj, Tj, P (Zj); p, t, z) + b̂g(p, t, z) + R̂g(p, t, z);

2. ∂ĝ(p, t)/∂p and P̂ (z) are uniformly consistent and converge to ∂g(p, t)/∂p and P (z), respec-
tively and ∂g(p, t)/∂p is continuous;

3. plimn→∞n−1/2
∑n

i=1 b̂g(P (Zi), Ti, Zi) = bg and

plimn→∞n−1/2
∑n

i=1
∂g(P (Zi),Ti)

∂p
b̂P (P (Zi), Ti, Zi) = bgP ;

4. plimn→∞n−1/2
∑n

i=1

[
∂ĝ(P Ti

(Zi),Ti)

∂p
− ∂g(P (Zi),Ti)

∂p

]
R̂P (P (Zi), Ti, Zi) = 0, and

plimn→∞n−1/2
∑n

i=1

[
∂ĝ(P Ti

(Zi),Ti)

∂p
− ∂g(P (Zi),Ti)

∂p

]
b̂P (P (Zi), Ti, Zi) = 0;

5. plimn→∞n−3/2
∑n

i=1

[
∂ĝ(P Ti

(Zi),Ti)

∂p
− ∂g(P (Zi),Ti)

∂p

]
ψnP (Dj, Zj; Ti, Zi) = 0.

then ĝ(P̂ (z), t) is also asymptotically linear with trimming where

[
ĝ(P̂ (z), t)− g(P (z), t)

]
I
(
(x, z) ∈ Â1

)
= n−1

n∑
j=1

[
ψng(Yj, Tj, P (Zj), Zj; P (z), t, z)

+ ∂g(t, P (z))/∂p · ψnP (Dj, Zj, Xj; x, z)
]

+ b̂g(x, z) + R̂g(x, z),

and plimn→∞
∑n

i=1 b̂g(Xi, Zi) = bg + bgP .

In our case, g(p, x) = ∂
∂p

E
( − (1 − D)Y |P (Z) = p,X = x

)
. The verification of the conditions

for Lemma 1 of HIT for the case where g itself is the derivative of some conditional expectation
with respect to one of the conditioning variables is not really different from what HIT have. The
only potential difference is in the proof of theorem 4, but even there, their argument holds for the
entire ∇β̂ vector, not just the first component.
All these arguments show that

[
ĥ0(P̂ (z),x)−h0(P (z),x)

]
I
(
(x,z)∈Â1

)
= N−1

PN
j=1

h
ψNh0

(−(1−Dj)Yj ,P (Zj),Xj ;P (z),x,z)+
∂h0(P (z),x)

∂p
ψnP (Dj ,Zj ;x,z)

i

+ b̂ĥ0
(x, z) + R̂ĥ0

(x, z)
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with plimN→∞
1√
N

∑N
j=1 b̂ĥ0

(Xj, Zj) = bh0 + bh0P < ∞, plimN→∞
1√
N

∑N
j=1 R̂ĥ0

(Xj, Zj) = 0, and

ψNh0(−(1 − Dj)Yj, P (Zj), Xj; P (z), x, z) = εh0
j e2[MpN(s)]−1

[(
Sj−s

hNh0

)Qp
]′

1

hd+1
Nh0

K
(

Sj−s

hNh0

)
I1(x, z),

with S = (P (Z), X), and εh0
j = −(1−Dj)Yj − E

[− (1−Dj)Yj|Sj

]
; and

ψNP (Dj, Zj; x, z) = εP
j e1[MpN(z)]−1

[(
Zj−z

hNP

)Qp
]′

1

hdz
NP

K
(

Zj−z

hNP

)
I1(x, z), εP

j = Dj − E[Dj|Zj]. De-

fine

ψNh0P (Dj, Yj, Xj, Zj; x, z) := ψNh0(−(1−Dj)Yj, P (Zj), Xj; P (z), x, z)+
∂h0(P (z), x)

∂p
ψNP (Dj, Zj; x, z)

C.3 Estimating q(h0(x, P (z)), P (z))

We need to estimate E(Y |D = 1, h1(X, P (Z)), P (Z)). But

E(Y |D = 1, h1(X,P (Z)), P (Z)) =
E(DY |h1(X, P (Z)), P (Z))

P (D = 1|h1(X,P (Z)), P (Z))
=

E(DY |h1(X, P (Z)), P (Z))

P (Z)

We could use local polynomial regression to estimate E(DY |h1(X,P (Z)), P (Z)). Therefore the
analysis here is very similar to the proof of their theorem 3. The only difference is that we evaluate
this estimator at the value of the random vector (h0(Xi, P (Zi)), P (Zi)), which is different from
the random vector we condition on. As long as the support of h0(Xi, P (Zi)) is contained in
the support of h1(Xi, P (Zi)) this is well defined. To simplify the following expressions, define
T1i := (h1(Xi, P (Zi)), P (Zi)), and T0i := (h0(Xi, P (Zi)), P (Zi)). Let t1 and t0 denote a value in
the interior of the support of T1 and T0, respectively. And let p denote that point in the interior
of the support of P (Z) that corresponds to t0. Note that here, d = 2.

Let Î1i := 1{f̂X,Z(Xi, Zi) ≥ q01}, I1i := 1{fX,Z(Xi, Zi) ≥ q01},
Î2i := 1{f̂ĥ1,P̂ (ĥ0(Xi, P̂ (Zi)), P̂ (Zi)) ≥ q02}, and I2i := 1{fh1,P (h0(Xi, P (Zi)), P (Zi)) ≥ q02}. Our
goal is to derive the asymptotic distribution of

1√
N

∑N
i=1

[
Di

(
q̂(h0i, Pi)− q(h0i, Pi)

)]
Î1(Xi, Zi)Î2(Xi, Zi)

Let W (t0) := h−2
Nqdiag

(
K

(
T11−t0

hNq

)
, . . . , K

(
T1N−t0

hNq

))
, εq

i := DiYi − E(DiYi|T1i).

Tp(t0) :=




(T11 − t0)
Qp

...
(T1N − t0)

Qp
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Now

q̂(t0)− q(t0) =
1

p
e1[M̂pN(t0)]

−1N−1H ′T ′
p(t0)W (t0)ε

q

+
1

p
e1[M̂pN(t0)]

−1N−1H ′Tp(t0)
′W (t0)T p(t0)β

∗
p(t0)

+
1

p
e1[M̂pN(t0)]

−1N−1H ′T ′
p(t0)W (t0)rp(t0)

Therefore,

1√
N

∑N
j=1 Dj[q̂(T0j)− q(T0j)]Î1j Î2j = 1√

N

∑N
j=1

Dj

P (Zj)
e1[M̂pN(T0j)]

−1N−1H ′T ′
p(T0j)W (T0j)ε

q Î1j Î2j

+ 1√
N

∑N
j=1

Dj

P (Zj)
e1[M̂pN(T0j)]

−1N−1H ′Tp(T0j)
′(T0j)W (T0j)T p(T0j)β

∗
p(T0j)Î1j Î2j

+ 1√
N

∑N
j=1

Dj

P (Zj)
e1[M̂pN(T0j)]

−1N−1H ′T ′
p(T0j)W (T0j)rp(T0j)Î1j Î2j

C.3.1 First Term:

Let’s start with the first term. Add and subtract

1√
N

N∑
j=1

Dj

P (Zj)
e1[MpN(T0j)]

−1N−1H ′T ′
p(T0j)W (T0j)ε

qI1jI2j

We will argue that

1

N
√

N

N∑
j=1

N1∑
i=1

Dj

P (Zj)
e1[M̂pN(T0j)]

−1

[(
T1i − T0j

hNq

)Qp
]′

h−2
Nqε

q
i K

(
T1i − T0j

hNq

)
Î1j Î2j

− 1

N
√

N

N∑
j=1

N1∑
i=1

Dj

P (Zj)
e1[MpN(T0j)]

−1

[(
T1i − T0j

hNq

)Qp
]′

h−2
Nqε

q
i K

(
T1i − T0j

hNq

)
I1jI2j = op(1)

Now we will go through arguments as in lemmas 2 through 6 of HIT, and try to show that
this sum is op(1). To do that define γN0(T0j) = e1[MpN(T0j)]

−1, γ̂N(T0j) = e1[M̂pN(T0j)]
−1,

A1 = {(x, z) : fX,Z(x, z) ≥ q01 − εf > 0}, A1 := {(x, z) : fX,Z(x, z) ≥ q01}, A2 := {(x, z) :
fh1(X,P (Z)),P (Z)(h0(x, P (z)), P (z)) ≥ q02} and

ΓN = {γN(x)| sup
x∈A1

|γN(x)− e1[MpN(x)]−1| ≤ εγ}

G1N :=

{
gN : gN(εq

i , T1i; Dj, T0j, Xj, Zj)

= N−3/2γN(T0j)
Dj

P (Zj)

[(
T1i − T0j

hNq

)Qp
]′

h−2
Nqε

q
i K

(
T1i − T0j

hNq

)
Ĩ1j Ĩ2j

}
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gN0(ε
q
i , T1i; Dj, T0j, Xj, Zj) = N−3/2γN0(T0j)

Dj

P (Zj)

[(
T1i − T0j

hNq

)Qp
]′

h−2
Nqε

q
i K

(
T1i − T0j

hNq

)
I1jI2j

Let H1, I1, H2 and I2 be as in Appendix B. We are going to try to show that the process∑N
i=1

∑N
j=1 gN(εq

i , T1i; Dj, T0j, Xj, Zj) is equicontinuous over G1n in a neighborhood of
gN0(ε

q
i , T1i; Dj, T0j, Xj, Zj), and that ĝN(εq

i , T1i; Dj, T0j, Xj, Zj) lies in the neighborhood over which
we establish equicontinuity with probability approaching to 1.

We will first check if the associated processes are degenerate:

E
[
gN(εq

i , T1i; Di, T0i)
]

= N−3/2E

{
γN(T0i)

h−2
Nq

P (Zi)

[(
T1i−T0i

hNq

)Qp
]′

K
(

T1i−T0i

hNq

)
Ĩ1iĨ2iE[Diε

q
i |Xi, Zi]

}

with εq
i = DiYi − E(DiYi|h1(Xi, P (Zi)), P (Zi)).

E
[
Diε

q
i |Xi, Zi

]
= E[DiYi|Xi, Zi]− E

[
DiE(DiYi|h1(Xi, P (Zi)), P (Zi))|Xi, Zi

]

= E[DiYi|Xi, Zi]− E(Di|Xi, Zi)E(DiYi|h1(Xi, P (Zi)), P (Zi))

= E[DiYi|Xi, Zi]− P (Zi)E(DiYi|h1(Xi, P (Zi)), P (Zi))

This does not have zero expectation. Therefore the associated U-process is not degenerate. But
we can remedy this by adding and subtracting the expectation of gN from it. Let

g̃N(εq
i , T1i; Di, T0i) = N−3/2γN(T0i)

Di

P (Zi)

[(
T1i − T0i

hNq

)Qp
]′

h−2
Nqε

q
i K

(
T1i − T0i

hNq

)

− E

{
N−3/2γN(T0i)

Di

P (Zi)

[(
T1i − T0i

hNq

)Qp
]′

h−2
Nqε

q
i K

(
T1i − T0i

hNq

)}

This process is degenerate, and satisfies all the conditions of the lemma 3 of HIT. It is thus
equicontinuous. But this is only one piece of the

∑N
i=1 gN(εq

i , T1i; Di, T0i) process. The other piece
is

N∑
i=1

E

{
N−3/2γN(T0i)

Di

P (Zi)

[(
T1i − T0i

hNq

)Qp
]′

h−2
Nqε

q
i K

(
T1i − T0i

hNq

)
Ĩ1iĨ2i

}

= N−1/2E

{
γN(T0i)

Di

P (Zi)

[(
T1i − T0i

hNq

)Qp
]′

h−2
Nqε

q
i K

(
T1i − T0i

hNq

)
Ĩ1iĨ2i

}

We have to make sure that the limit of this is 0. We know that any element of
"�

T1i−T0i
hNq

�Qp
#′

Kh(T1i−

T0i) is bounded by C1h
−2
NqI{||T1i − T0i|| ≤ C2hNq} for some finite C1 and C2. On the other hand,

|Di| ≤ 1, |Ĩ1iĨ2i| ≤ 1 E|εq
i | < ∞, and P (Zi) is almost surely bounded away from 0. Combining
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these facts with Nh4
Nq →∞, we get that the desired limit is in fact 0. Now

∑N
i=1

(
gN(i)−E(gN)

)
is a degenerate U-process, which satisfies the conditions of the equicontinuity lemma.
Next, we focus on the part containing different indices. Let Si := (εq

i , Di, T1i, T0i, Xi, Zi). Define

g0
N(Si, Sj) =

1

2
N−3/2γN(T0j)

Dj

P (Zj)

[(
T1i − T0j

hNq

)Qp
]′

h−2
Nqε

q
i K

(
T1i − T0j

hNq

)
Ĩ1j Ĩ2j

+
1

2
N−3/2γN(T0i)

Di

P (Zi)

[(
T1j − T0i

hNq

)Qp
]′

h−2
Nqε

q
jK

(
T1j − T0i

hNq

)
Ĩ1iĨ2i

Define φN(Si) = E[g0
N(Si, Sj)|Si]. Then,

φN(Si) = E[g0
N(Si, Sj)|Si] = 1

2
N−3/2h−2

Nq×
E

(
γN (T0j)

Dj
P (Zj)

"�
T1i−T0j

hNq

�Qp
#′

εq
i K

�
T1i−T0j

hNq

�
Ĩ1j Ĩ2j+γN1

(T0i)
Di

P (Zi)
εq
j

"�
T1j−T0i

hNq

�Qp
#′

K

�
T1j−T0i

hNq

�
Ĩ1iĨ2i|εq

i ,Di,T1i,T0i,Xi,Zi

)

Note that

E

{
γN(T0i)

Di

P (Zi)
εq

j

[(
T1j−T0i

hNq

)Qp
]′

K
(

T1j−T0i

hNq

)
Ĩ1iĨ2i|εq

i , Di, T1i, T0i, Xi, Zi

}

= γN(T0i)
Di

P (Zi)
Ĩ1iĨ2iE

(
E

 
εq
j

"�
T1j−T0i

hNq

�Qp
#′

K

�
T1j−T0i

hNq

�
|εq

i ,Di,T1i,T0i,Xi,Zi,T1j

!
|εq

i ,Di,T1i,T0i,Xi,Zi

)

= γN(T0i)
Di

P (Zi)
Ĩ1iĨ2iE

("�
T1j−T0i

hNq

�Qp
#′

K

�
T1j−T0i

hNq

�
E(εq

j |εq
i ,Di,T1i,T0i,Xi,Zi,T1j)|εq

i ,Di,T1i,T0i,Xi,Zi

)

= γN(T0i)
Di

P (Zi)
Ĩ1iĨ2iE

{[(
T1j−T0i

hNq

)Qp
]′

K
(

T1j−T0i

hNq

)
E

(
εq

j |T1j

) |εq
i , Di, T1i, T0i, Xi, Zi

}
= 0

Therefore,

φN(Si) = 1
2
N−3/2h−2

NqE

(
γN (T0j)

Dj
P (Zj)

"�
T1i−T0j

hNq

�Qp
#′

εq
i K

�
T1i−T0j

hNq
Ĩ1j Ĩ2j

�
|εq

i ,Di,T1i,T0i,Xi,Zi

)

=
1

2
N−3/2h−2

Nqε
q
i E

{
γN1(T0j)

Dj

P (Zj)

[(
T1i − T0j

hNq

)Qp
]′

K

(
T1i − T0j

hNq

)
Ĩ1j Ĩ2j|T1i

}

This is of the form ϕN(T1i)ε
q
i , and E

(
ϕN(T1i)ε

q
i

)
= E

[
ϕN(T1i)E(εq

i |T1i)
]

= 0. Thus we can define

g̃0
N(Si, Sj) := g0

N(Si, Sj) − φN(Si) − φN(Sj). The process
∑

i

∑
j 6=i g̃

0
N(Si, Sj) is a degenerate U-

process of order two. On the other hand, the above calculations show that
∑

i 2(N − 1)φN(Si)
is a degenerate order one process. Since |Di| ≤ 1 and P (Zi) is bounded away from 0, and
Ĩ1iĨ2i ≤ Ĩ1i ≤ I∗1i := 1{fX,Z(Xi, Zi) ≥ q01 − εf1} the same steps as on p. 287 of HIT prove that
each of these processes satisfies the first two conditions of the equicontinuity lemma. For the third
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condition, take any g
(1)
N , g

(2)
N ∈ G1N .

|g(1)
N − g

(2)
N | =

∣∣∣N−3/2 Dj

P (Zj)
h−2

Nqε
q
i K

(
T1i−T0j

hNq

)∣∣∣

×
∣∣∣∣γ
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hNq

)Qp
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Ĩ
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1j Ĩ

(1)
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Ĩ
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1j Ĩ
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≤
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P (Zj)
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Nqε
q
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(
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hNq
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∣∣∣∣
(
γ

(1)
N (T0j)− γ

(2)
N (T0j)

) [(
T1i−T0j

hNq
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]′

Ĩ
(1)
1j Ĩ

(1)
2j

∣∣∣∣

+
∣∣∣N−3/2 Dj

P (Zj)
h−2

Nqε
q
i K

(
T1i−T0j

hNq

)∣∣∣
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[(
T1i−T0j

hNq

)Qp
]′

Ĩ
(1)
2j
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(2)
1j
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+
∣∣∣N−3/2 Dj

P (Zj)
h−2

Nqε
q
i K

(
T1i−T0j

hNq
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∣∣∣∣γ

(2)
N (T0j)

[(
T1i−T0j

hNq

)Qp
]′

Ĩ
(2)
1j

∣∣∣∣
∣∣∣Ĩ(1)
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(2)
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∣∣∣

Therefore, the third condition of the equicontinuity lemma will hold, if each of the families
ΓN , I1, I2 satisfy it. To verify that these families satisfy that condition, we will use lemma
4 of HIT. For ΓN to satisfy this condition, we need that both E[DY |h1(X,P (Z)), P (Z)] and
fh1(X,P (Z)),P (Z) are both p2 smooth where p2 + α2 > dim(X, P (Z)) with α2 equal to the smaller
of the Holder continuity constant of these functions. At the same time, if fh1(X,P (Z)),P (Z) satisfies
this smoothness condition, and if the first derivative of fh1(X,P (Z)),P (Z) is uniformly continuous
and the Lebesgue density ffh1,P

of fh1(X,P (Z)),P (Z) is continuous in a neighborhood of q02 with
ffh1,P

(q02) > 0, the third condition of the equicontinuity lemma is satisfied for I2. Similarly, if
fX,Z is p1 smooth where p1 + α1 > dim(X, Z) with α1 equal to the Holder continuity constant,
if the first derivative of fX,Z is uniformly continuous and the Lebesgue density ffX,Z

of fX,Z is
continuous in a neighborhood of q01 with ffX,Z

(q01) > 0, the third condition of the equicontinuity
lemma is satisfied for I1.

Combining all these results, we conclude that the process
∑N

j=1

∑N
i=1 gN(εq

i , T1i, T0j) is equicon-
tinuous over G1N in a neighborhood of gN0(ε

q
i , T1i, Dj, T0j, Xj, Zj).

Lemma 5 and 6 of HIT can be used to show that sup(x,z)∈A1∩A2
||M̂pN(h0(x, P (z)), P (z)) −

MpN(h0(x, P (z)), P (z))|| → 0. This result combined with the arguments at the beginning shows
that ĝN(εq

i , T1i, T0j) lies in the neighborhood of gN0(ε
q
i , T1i, T0j, Xj, Zj) over which equicontinuity

was shown.

C.3.2 Second Term:

Next, we look at

1√
N

N∑
j=1

Dje1[M̂pN(T0j)]
−1N−1H ′Tp(T0j)

′(T0j)W (T0j)T p(T0j)β
∗
p(T0j)Î1j Î2j
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Fix the evaluation point (d0, x0, z0) such that (x0, z0) ∈ A1 ∩ A2. Let P0 = P (z0), t0 =
(h0(x0, P (z0)), P (z0). Then each term in this sum equals:

e1H[M̂pN(t0)]
−1N−1 d0

P0

H ′T ′
p(t0)W (t0)T p(t0)β

∗
p (t0)Î10Î20

= e1[M̂pN(t0)]
−1
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N−1 1
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hNq

)Qp
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′K
(
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hNq

)
Î10Î20

We add and subtract

e1[M̂pN (t0)]−1
Pp

s=p+1
1

h2
Nq
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Dj

P (Zj)

"�
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hNq

�Qp
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Q(s)K

�
T1i−T0j

hNq

�
|T0j=t0,Xj=x0,Zj=z0

)
[m(s)(t0)]′Î10Î20

This gives us three terms. But the difference of the two terms is handled in the same way as in
lemma 2. In particular, we take γn and Γn as before and define

gN(T1i, T0j, Dj, Xj, Zj) = N−3/2γN(T0j)h
−2
Nq

×
 

Dj
P (Zj)
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hNq

�Qp
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−E
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P (Zj)

"�
T1i−T0j

hNq

�Qp
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�∣∣∣T0j ,Xj ,Zj

#!

×[m(s)(T0j)]
′Ĩ1j Ĩ2j

LetĝN(T1i, T0j, Xj, Zj) and gN0(T1i, T0j, Xj, Zj) be defined in the same way as before. More-
over, let G2N := {gn(T1i, T0j, Xj, Zj)|γN(T0j) ∈ ΓN}. Then going through the same steps as

in lemma 2 we can show that 1/
√

N
∑N

j=1 R̂21(T0j, Dj) =
∑N

i=1

∑N
j=1[ĝN(T1i, T0j, Dj, Xj, Zj) −

gN0(T1i, T0j, Dj, Xj, Zj)] = op(1).
Then we deal with the term
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hNq
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which in turn equals

e1

(
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−1
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·Pp
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1
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Nq
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)
[m(s)(t0)]′Î10Î20

The first expression can be treated in the same way as in lemma 2. If t0 = (h0(x0, P (z0)), P (z0)),
the last expression equals

e1[Mp(t0)]−1
Pp
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1
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R
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R
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We need

plimN→∞1/
√

N
∑N

i=1 hp
Nqe1[Mp(T0i)]

−1×
∑p

s=p+1

[∫
uQ(0) · uQ(s)m(s)(T0i)

′ · uQ(p−1)K(u)du, ...,
∫

uQ(p) · uQ(s)m(s)(T0i)
′ · uQ(p−1)K(u)du

]

×f (p−s)(T0i)
′ = bq < ∞

All the terms involving T0i = (h0(Xi, P (Zi)), P (Zi)) are bounded with probability 1. Thus, if
Nh2p

Nq → c < ∞ then we are OK.

C.3.3 Third Term:

We claim that under our assumptions, for each evaluation point (d0, x0, z0) such that (x0, z0) ∈
A1 ∩ A2,

e1[M̂pN(t0)]
−1N−1 d0

P (z0)
H ′T ′
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But, as in lemma 8 of HIT,
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By lemma 5 of HIT, for any t0 such that fh1(X,P (Z)),P (Z)(t0) > 0, for sufficiently large N , M̂pN(t0)

will be nonsingular. Therefore, every element of the matrix [M̂pN(t0)]
−1 has finite norm.

C.3.4 Conclusion:

1√
N
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j=1 Dj

(
q̂(h0j, Pj)− q(h0j, Pj)

)
Î1j Î2j =AE

1√
NN
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where εq
i = DiYi − E

[
DiYi|h1

(
Xi, P (Zi)

)
, P (Zi)

]
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C.4 Issues in Trimming

The first part of this appendix shows that the family of functions that the trimming function,
which is based on the values the the estimated density f̂(x, z), belongs to satisfies the conditions
of the equcicontinuity lemma. The second part of the appendix shows the same thing for the
trimming function which is based on, f̂ĥ1,P̂ , the kernel density estimator of fh1,P . Let S be a
random variable, whose values we observe. Also let

H := {f : sup
s∈supp(X)

|f(s)− fS(s)| ≤ εf , f has smoothness q > d, inf
s∈A

||Df(s)|| ≥ θ}

I := {I((s) ∈ Ã) : Ã = {s : f(s) ≥ q0} for some f ∈ H}
A := {s : fS(s) ≥ q0 − εf}
A := {s : fS(s) ≥ q0}

where θ > 0. First we observe that under the assumptions of Silverman’s Theorem A on fS, the
kernel function and the bandwidth sequence used to estimate this density function

sup
s∈supp(S)

∣∣∣f̂(s)− f(s)|
∣∣∣ → 0 a.s.

sup
s∈supp(S)

∣∣∣∣∣
∂f̂

∂sj

(s)− ∂f

∂sj

(s)|
∣∣∣∣∣ → 0 a.s. for j ∈ {1, ..., d}

Using this result, we can claim that 1A(s) is an envelope for I. On the other hand, we can also
prove that if the third condition of the equicontinuity lemma holds for H, it also holds for I.
For this purpose, observe that for any function in H, and for any probability measure that is
absolutely continuous with respect to Lebesgue measure,

P ({x : f(x) = q0}) = 0

Then by the dominated convergence theorem,

lim
δ↓0

P ({x : f(x) = q0} ⊕ Bδ(0)) = 0

where A⊕B := {a+ b : a ∈ A, b ∈ B}, and Bδ(0) denotes the ball around 0 with radius δ. Next,
I claim that for any f, g ∈ H, such that supx∈A |f(x)− g(x)| < η, and for δ = η/θ,

P ({f ≥ q0 > g}) ≤ P ({x : f(x) = q0} ⊕ Bδ(0))

To see this, consider any s ∈ A \ ({x : f(x) = q0} ⊕ Bδ(0)). Then for each u ∈ {x : f(x) = q0},
d(u, s) ≥ δ. If f(s) ≤ q0, there is nothing to prove. Otherwise, pick some u ∈ {x : f(x) = q0}.
Using the mean value theorem, we know that

|f(s)− f(u)| = |f(s)− q0| = ||Df(ũ)|| · ||s− u|| ≥ θ||s− u|| > θδ = η
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Since |f(s)− g(s)| < η, this implies that g(s) ≥ q0, i.e. s ∈ A \ {x : f(x) ≥ q0 > g}, equivalently
that {x : f(x) ≥ q0 > g(x)} ⊆ ({x : f(x) = q0}⊕Bδ(0)). The last step is to note that by choosing
η appropriately we could make sure that P ({x : f(x) ≥ q0 > g(x)}) + P ({x : g(x) ≥ q0 > f(x)})
arbitrarily small.

Next we turn to our trimming problem. We have to employ two trimming functions. The first
function is needed to guarantee that the estimator ˆP (z) is uniformly consistent for E(D|Z). The
second trimming function is needed because we need to have a uniformly consistent estimate for
E(DY |h1(X, P (Z)), P (Z)) evaluated at the value (h0(X < P (Z)), P (Z)) takes. For this purpose
we define d = dim(supp(X, Z)). We will use the arguments given above with S = (X, Z) to argue
that our first trimming function satisfies the conditions of the equicontinuity lemma. We define

A1 = {(x, z) : fX,Z(x, z) ≥ q01 − εf1}
Aq = {(x, z) : q01 + εf1 ≥ fX,Z(x, z) ≥ q01 − εf1}
Bz = {z ∈ supp(Z) : (x, z) ∈ A1, for some x ∈ supp(X)}

and26

H1 = {f : sup
(x,z)∈supp(X,Z)

|f(x, z)− fX,Z(x, z)| ≤ εf1, f has smoothness q > d, inf
(x,z)∈Aq

||Df(x,z)||≥θ1}

I1 = {I((x, z) ∈ Ã1) : Ã1 = {(x, z) : f(x, z) ≥ q01} for some f ∈ H1}
ΨP = {g : sup

z∈Bz

|g(z)− P (z)| ≤ εP , g has smoothness q > d, inf
z∈Bzq

||Dg(z)|| ≥ θP}

∩ {g : sup
z∈Bz

|g(z)− P (z)| = oP (h̃3
N2)}

Ψh = {ϕ : sup
P̃∈ΨP

sup
(x,z)∈A1

|ϕ(x, P̃ (z))− h0(x, P (z))| ≤ εh, ϕ has smoothness q > d}

∩ {ϕ : sup
P̃∈ΨP

sup
(x,z)∈A1

|ϕ(x, P̃ (z))− h0(x, P (z))| = oP (h̃3
N2)}

∩ {ϕ : inf{||Dxϕ(x, P̃ (z))|| : (x, z) ∈ Aq, P̃ ∈ ΨP} ≥ θhx}
∩ {ϕ : inf{||DP ϕ(x, P̃ (z))|| : (x, z) ∈ Aq, P̃ ∈ ΨP} ≥ θhP}

H2 = {f : sup
(ϕ,P̃ )∈Ψh×ΨP

sup
(x,z)∈A1

|f(ϕ(x, P̃ (z)), P̃ (z))− fh1(X,P (Z)),P (Z)(h0(x, P (z)), P (z))| ≤ εf2}

∩ {f : f has smoothness q > d, inf
(x,z,P̃ ,ϕ)∈Aq×ΨP×Ψh

||Df(ϕ(x, P̃ (z)), P̃ (z))|| ≥ θ2}

I2 = {I((x, z) ∈ Ã2) : Ã2 = {(x, z) ∈ A1 : f(ϕ(x, P̃ (z)), P̃ (z)) ≥ q02} for some f∈H2,ϕ∈Ψh,P̃∈ΨP }

We would like to show that Î1 = 1{f̂X,Z(x, z) ≥ q01} ∈ I1 and Î2 = 1{f̂ĥ1,P̂ (ĥ0(x, P̂ (z)), P̂ (z)) ≥
q02} ∈ I2 for sufficiently large N with probability approaching to 1. The first of these follows

26In these definitions all the θ’s are strictly greater than 0, and h̃N2 denotes the smoothing parameter that is
used in the trimmed kernel density estimation of fh1,P .
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from the analysis above. To investigate the second one, consider 1{f̂ĥ1,P̂ (ĥ0(x, P̂ (z)), P̂ (z)) ≥
q02}1(A1)

27. For (x, z) ∈ A1, P̂ and h0(x, P̂ (z)) are uniformly consistent for P (z) and h0(x, P (z)),
respectively. So we only need to show that f̂ĥ1,P̂ is uniformly consistent for fh1,P . To be able to

guarantee this, we need ĥ1(Xi, P̂ (Zi)) and P̂ (Zi) to be uniformly consistent for h1(Xi, P (Zi)) and
P (Zi). However, this occurs only when the density of (X, Z) is bounded away from 0. Therefore,
we have to trim out those observations at which fX,Z is very small. Let K̃2 be a Lipschitz
function28 and define

f̂ĥ1,P̂

(
ϕ(x, P̃ (z)), P̃ (z)

)
:=

1

Nh̃2
N2

N∑
i=1

K̃2

(
(ĥ1(Xi, P̂ (Zi)), P̂ (Zi))− (ϕ(x, P̃ (z)), P̃ (z))

h̃N2

)
Î1(Xi, Zi)

f̂h1,P

(
ϕ(x, P̃ (z)), P̃ (z)

)
:=

1

Nh̃2
N2

N∑
i=1

K̃2

(
(h1(Xi, P (Zi)), P (Zi))− (ϕ(x, P̃ (z)), P̃ (z))

h̃N2

)
Î1(Xi, Zi)

Consider

|f̂ĥ1,P̂ (ϕ(x, P̃ (z)), P̃ (z))− fh1,P (h0(x, P (z)), P (z))| ≤ (13)∣∣∣f̂ĥ1,P̂ (ϕ(x, P̃ (z)), P̃ (z))− f̂ĥ1,P̂ (h0(x, P (z)), P (z))
∣∣∣

+
∣∣∣f̂ĥ1,P̂ (h0(x, P (z)), P (z))− f̂h1,P (h0(x, P (z)), P (z))

∣∣∣
+

∣∣∣f̂h1,P (h0(x, P (z)), P (z))− fh1,P (h0(x, P (z)), P (z))
∣∣∣

We will first deal with the first term.

|f̂ĥ1,P̂ (ϕ(x, P̃ (z)), P̃ (z))− f̂ĥ1,P̂ (h0(x, P (z)), P (z))| ≤
1

Nh̃2
N2

∑N
i=1

∣∣∣K̃2

(
(ĥ1(Xi,P̂ (Zi)),P̂ (Zi))−(ϕ(x,P̃ (z)),P̃ (z))

h̃N2

)
− K̃2

(
(ĥ1(Xi,P̂ (Zi)),P̂ (Zi))−(h0(x,P (z)),P (z))

h̃N2

)∣∣∣ Î1(Xi, Zi)

≤ M
h̃3

N2

[∣∣∣ϕ(x, P̃ (z))− h0(x, P (z))
∣∣∣ +

∣∣∣P̃ (z)− P (z)
∣∣∣
]

We know that on A1, both ϕ(x, P̃ (z)), and P̃ (z) are uniformly consistent. Moreover, |ϕ(x, P̃ (z))−
h0(x, P (z))| and |P̃ (z)− P (z)| are both op(h̃

3
N2) on A1. On the other hand,∣∣∣f̂ĥ1,P̂ (h0(x, P (z)), P (z))− f̂h1,P (h0(x, P (z)), P (z))

∣∣∣ =
���� 1

Nh̃2
N2

PN
i=1

�
K̃2

�
(ĥ1(Xi,P̂ (Zi)),P̂ (Zi))−(h0(x,P (z)),P (z))

h̃N2

�
−K̃2

�
(h1(Xi,P (Zi)),P (Zi))−(h0(x,P (z)),P (z))

h̃N2

��
|Î1(Xi,Zi)

����

≤
∣∣∣ M1

Nh̃3
N2

∑N
i=1

[
ĥ1(Xi, P̂ (Zi))− h1(Xi, P (Zi))

]
Î1(Xi, Zi)

∣∣∣
+

∣∣∣ M1

Nh̃3
N2

∑N
i=1

[
P̂ (Zi)− P (Zi)

]
Î1(Xi, Zi)

∣∣∣

27Note that the first trimming function Î1 would eventually eliminate observations which lie outside of A1 with
probability approaching to 1. So in terms of the second trimming function, we only need to worry about (x, z)
values in A1.

28Later, we may impose other conditions on this kernel function.
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Using the results of Appendix C.1:
∣∣∣ M1

Nh̃3
N2

∑N
i=1

[
P̂ (Zi)− P (Zi)

]
Î1(Xi, Zi)

∣∣∣
≤

∣∣∣ M1

N2h̃3
N2

∑N
i=1

∑N
j=1 ψNP (Dj, Xj, Zj; Xi, Zi)

∣∣∣ +
∣∣∣ M1

Nh̃3
N2

∑N
i=1 b̂P (Xi, Zi)

∣∣∣
+

∣∣∣ M1

Nh̃3
N2

∑N
i=1 R̂P (Xi, Zi)

∣∣∣

Let’s deal with the first part first. Split the first term into two sums: one containing the terms
where i and j are the same, and the other, where they are different:

∣∣∣ M1

N2h̃3
N2

∑N
i=1 ψNP (Xi, Zi, Di; Xi, Zi)

∣∣∣ =
∣∣∣ M1

N2h̃3
N2

∑N
i=1 e1[M

P
pN(Zi)]

−1e′1h
−dz
NP KP (0)εP

i

∣∣∣ =
∣∣∣ 1
N

∑N
i=1

M1

Nh̃3
N2hdz

NP

e1[M
P
pN(Zi)]

−1e′1K
P (0)εP

i

∣∣∣

We will apply a strong law of large numbers:

Theorem C.1 (Chebyshev) Let S1, S2, ... be uncorrelated with means µ1, µ2, ... and variances
σ2

1, σ
2
2, .... If

∑N
i=1 σ2

i = o(N2) as N →∞ then

1

N

N∑
i=1

Si − 1

N

N∑
i=1

µi→P 0

To apply this theorem we need to check the expectation and the variance of the ith term:

E
[
e1[M

P
pN(Zi)]

−1e′1K
P (0)I1(Xi, Zi)ε

P
i

]
=

E
[
e1[M

P
pN(Zi)]

−1e′1K
P (0)I1(Xi, Zi)E(εP

i |Xi, Zi)
]

= 0

We also need to verify that the required variance condition holds.

lim
N→∞

1

N2

N∑
i=1

E

[
M2

1

N2h̃6
N2h

2dz
NP

(
e1[M

P
pN(Zi)]

−1e′1
)2(

KP (0)
)2

I1(Xi, Zi)
(
εP

i

)2

]

= lim
N→∞

M1

N3h̃6
N2h

2dz
NP

E
[(

e1[M
P
pN(Zi)]

−1e′1
)2(

KP (0)
)2

I1(Xi, Zi)
(
εP

i

)2
]

Nh2dz
N → ∞. As long as Nh̃3

N2 does not converge to 0, or does not converge to 0 too fast, the
variance condition needed to apply the theorem holds and we have

plimN→∞
1

N

N∑
i=1

M1

Nh̃3
N2h

dz
NP

e1[M
P
pN(Zi)]

−1e′1K
P (0)I1(Xi, Zi)ε

P
i = 0
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Then by the continuous mapping theorem

plimN→∞
∣∣∣ M1

N2h̃3
N2

∑N
i=1 ψNP (Xi, Zi, Di; Xi, Zi)

∣∣∣ =
∣∣∣plimN→∞ 1

N

∑N
i=1

M1

Nh̃3
N2hdz

NP

e1[M
P
pN(Zi)]

−1e′1K
P (0)I1(Xi, Zi)ε

P
i

∣∣∣ = 0

Next, we deal with ∣∣∣ M1

N2h̃3
N2

∑N
i=1

∑N
j 6=i ψNP (Xj, Zj, Dj; Xi, Zi)

∣∣∣

For this term, we will appeal to the Hoeffding, Powell, Stock and Stoker lemma. Defining

ζ(Di, Yi, Xi, Zi, Dj, Yj, Xj, Zj) = 1

2hdz
NP

e1[M
P
pN(Zi)]

−1
[(

Zj−Zi

hNP

)]′
KP

(
Zj−Zi

hNP

)
I1(Xi, Zi)ε

P
j

+ 1

2hdz
NP

e1[M
P
pN(Zj)]

−1
[(

Zi−Zj

hNP

)]′
KP

(
Zi−Zj

hNP

)
I1(Xj, Zj)ε

P
i

The arguments in Appendix C.1 show that

E
[
ζ(Di, Yi, Xi, Zi, Dj, Yj, Xj, Zj)

]
= 0

E
[
(ζ(Di, Yi, Xi, Zi, Dj, Yj, Xj, Zj))

2
]

= o(N)

Therefore, using the Hoeffding, Powell, Stock and Stoker lemma,

plimN→∞ M1

N2h̃3
N2

∑N
i=1

∑N
j 6=i ψNP (Xj, Zj, Dj; Xi, Zi) =

plimN→∞
M1√
Nh̃6

N2

plimN→∞N−1/2
PN

i=1 E

�
e1[MP

pN (Zj)]
−1I1(Xj ,Zj)

h�
Zi−Zj
hNP

�i′
KP

�
Zi−Zj
hNP

�
h−dz

NP εP
i |Di,Xi,Zi

�

=plimN→∞ 1
N

PN
i=1

M1

h
dz
NP

h̃3
N2

E

�
e1[MP

pN (Zj)]
−1I1(Xj ,Zj)

h�
Zi−Zj
hNP

�i′
KP

�
Zi−Zj
hNP

�
εP
i |Di,Xi,Zi

�

We can now apply the same law of large numbers. Each µi = 0. Therefore 1/N
∑N

i=1 µi = 0. We

still have to verify that
∑N

i=1 σ2
i = o(N2).

1
N2

PN
i=1

M2
1

h̃6
N2

E

8
<
:

 
E

"
e1[MP

pN (Zj)]
−1I1(Xj ,Zj)

h�
Zi−Zj
hNP

�i′
1

h
dz
NP

KP
�

Zi−Zj
hNP

�
εP
i |Di,Xi,Zi

#!2
9
=
;

By Jensen’s inequality
(

E

[
e1[M

P
pN(Zj)]

−1I1(Xj, Zj)
[(

Zi−Zj

hNP

)]′
1

hdz
NP

KP
(

Zi−Zj

hNP

)
εP

i |Di, Xi, Zi

])2

≤E

(
I1(Xj ,Zj)

�
e1[MP

pN (Zj)]
−1
h�

Zi−Zj
hNP

�i′�2
1

h
2dz
NP

�
KP

�
Zi−Zj
hNP

��2

(εP
i )

2|Di,Xi,Zi

)

=
(εP

i )
2

h
dz
NP

E

(
I1(Xj ,Zj)

�
e1[MP

pN (Zj)]
−1
h�

Zi−Zj
hNP

�i′�2
1

h
dz
NP

�
KP

�
Zi−Zj
hNP

��2
|Di,Xi,Zi

)
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On A1, e1[M
P
pN(Zj)]

−1 and the density fX,Z are bounded. Moreover, the kernel function KP is

assumed to have compact support, and hence for some positive C̃

E

(
I1(Xj ,Zj)

�
e1[MP

pN (Zj)]
−1
h�

Zi−Zj
hNP

�i′�2
1

h
dz
NP

�
KP

�
Zi−Zj
hNP

��2
|Di,Xi,Zi

)
≤C̃

Since, we also have σ2
P := E(εP

i )2 < ∞,

1
N2

PN
i=1

M2
1

h̃6
N2

E

8
<
:

 
E

"
e1[MP

pN (Zj)]
−1I1(Xj ,Zj)

h�
Zi−Zj
hNP

�i′
1

h
dz
NP

KP
�

Zi−Zj
hNP

�
εP
i |Di,Yi,Xi,Zi

#!2
9
=
;

≤ 1
N2

∑N
i=1

M2
1

hdz
NP h̃6

N2

σ2
P C̃ = M2

Nhdz
NP h̃6

N2

We assumed that Nh2dz
NP → ∞. Then if

√
N h̃6

N2 does not go to 0, or if it does not go to 0 too
fast, then the product of

√
Nhdz

NP and
√

N h̃6
N2 will still go to ∞29. Next, we deal with

∣∣∣ M1

Nh̃3
N2

∑N
i=1 b̂P (Xi, Zi)

∣∣∣

From Appendix C.1, we know that plimN→∞ 1√
N

∑N
i=1 b̂P (Xi, Zi) = bP < ∞. Then if limN→∞

√
Nh̃3

N2

= ∞, this term too will be converging to 0 uniformly in probability by the continuous mapping
theorem. Finally, let us look at

∣∣∣ M1

Nh̃3
N2

∑N
i=1 R̂P (Xi, Zi)

∣∣∣ =
∣∣∣ M1√

Nh̃3
N2

1√
N

∑N
i=1 R̂P (Xi, Zi)

∣∣∣

We know that 1√
N

∑N
i=1 R̂P (Xi, Zi) = op(1). This, continuous mapping theorem, and our previous

assumption that limN→∞
√

Nh̃3
N2 = ∞ jointly imply that this last term also goes to 0 uniformly

in probability.
Using Appendix C.2, we can write

∣∣∣ M1

Nh̃3
N2

∑N
i=1

[
ĥ1(Xi, P̂ (Zi))− h1(Xi, P (Zi))

]
Î1(Xi, Zi)

∣∣∣ ≤
∣∣∣ M1

N2h̃3
N2

∑N
i=1

∑N
j=1 ψNĥ1

(Dj, Yj, Xj, Zj; Xi, Zi)
∣∣∣ +

∣∣∣ M1

Nh̃3
N2

∑N
i=1 b̂ĥ1

(Xi, Zi)
∣∣∣

+
∣∣∣ M1

Nh̃3
N2

∑N
i=1 R̂ĥ1

(Xi, Zi)
∣∣∣

Again, we know that plimN→∞ 1√
N

∑N
i=1 b̂ĥ1

(Xi, Zi) = bh1 + bh1P < ∞. So again, if
√

Nh̃3
N2 →

∞, by continuous mapping theorem, the middle term goes to 0 in probability. Similarly, we
know plimN→∞ 1√

N

∑N
i=1 R̂ĥ1

(Xi, Zi) = 0. Thus, the same condition guarantees that the last sum
converges to 0 in probability. As for the first sum, again we can split it into two pieces. One

29We could for example, choose h̃N2 = h
dz/6
NP .
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piece contains the terms where the two indices equal, the other piece contains the terms where
the indices are different: ∣∣∣ M1

N2h̃3
N2

∑N
i=1 ψNĥ1

(Di, Yi, Xi, Zi; Xi, Zi)
∣∣∣ =

∣∣∣ M1

N2h̃3
N2

∑N
i=1

(
ψNh1(Di, Yi, Xi, Zi; Xi, Zi) + ∂h1

∂P
(Xi, P (Zi))ψNP (Di, Xi, Zi; Xi, Zi)

)∣∣∣

Each term has 0 expectation. To verify that the sum of the variances is o(N2), by Cauchy-Schwarz
inequality it suffices to verify that

limN→∞ 1
N2

∑N
i=1 E

[
ψNh1(Di, Yi, Xi, Zi; Xi, Zi)

2
]

=

limN→∞ M1

N3h̃6
N2h

2(dx+2)
Nh1

E
[(

e1[M
h1
pN(Xi, P (Zi))]

−1e′1
)2(

Kh1(0)
)2

I1(Xi, Zi)
(
εh1

i

)2
]

= 0

and

limN→∞ 1
N2

∑N
i=1 E

[
ψNP (Di, Xi, Zi; Xi, Zi)

2
]

=

limN→∞ M1

N3h̃6
N2h2dz

NP

E
[(

e1[M
P
pN(Zi)]

−1e′1
)2(

KP (0)
)2

I1(Xi, Zi)
(
εP

i

)2
]

= 0

The first one is true because the term inside the parentheses is bounded, Nh̃6
N2 → ∞ and

Nh
2(dx+2)
Nh1

→ ∞. The second one is true because Nh2dz
NP → ∞, and again because the term

inside the parentheses is bounded, and Nh̃6
N2 → ∞. So the sum of terms with i = j converges

to 0 in probability. For the other sum, we again use Hoeffding, Powell, Stock and Stoker lemma.
By arguments in Appendix B, we know that

plimN→∞ M1

N2h̃3
N2

∑N
i=1

∑N
j 6=i ψNĥ1

(Dj, Yj, Xj, Zj; Xi, Zi) =

= plimN→∞ 1
N

∑N
i=1

M1

h̃3
N2

E
[
ψNĥ1

(Di, Yi, Xi, Zi; Dj, Yj, Xj, Zj)|Di, Yi, Xi, Zi

]

Then we apply the Chebyshev’s theorem one last time. Again, the expectation of ith term is 0.
And given that we have already assumed Nh2dz

NP →∞, Nh
2(dx+1)
Nh1

→∞ and Nh̃12
N2 does not go to

0, the variance condition is satisfied. Therefore, this sum converges to 0 in probability as well.
Our last step is to show that

∣∣∣f̂h1,P (h0(x, P (z)), P (z))− fh1,P (h0(x, P (z)), P (z))
∣∣∣

converges to 0 uniformly in probability.
∣∣∣f̂h1,P (h0(x, P (z)), P (z))− fh1,P (h0(x, P (z)), P (z))

∣∣∣ =
∣∣∣∣ 1
Nh̃2

N2

∑N
i=1 K̃2

((
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

)
Î1(Xi, Zi)− fh1,P (h0(x, P (z)), P (z))

∣∣∣∣
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Since E

[
1

h̃2
N2

K̃2

((
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

)]
exists30, for each η > 0, we can pick a large

number, T , so that

P

(
1

h̃2
N2

K̃2

((
h1(Xi, P (Zi)), P (Zi)

)− (h0(x, P (z)), P (z))

h̃N2

)
> T

)
<

η

2

Let G denote the complement of the set in the above expression. Then by Markov’s inequality,
for each α > 0,

P

(
1

h̃2
N2

K̃2

((
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

)
|Î1i − I1i| > α

)
≤

η
2

+ P

({
1

h̃2
N2

K̃2

((
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

)
|Î1i − I1i| > α

}
∩G

)
≤

η
2

+ T
α
E(|Î1i − I1i|)

By our previous assumptions, E(|Î1i − I1i|) approaches 0. Therefore, by choosing N sufficiently
large, that expectation can be made arbitrarily small, in particular, smaller than αη

2T
. But all these

arguments only show the convergence in probability for each point (x, z) ∈ A1. I could try using
the equicontinuity lemma (and that’s what I thought I was doing before). But the U-process is
not degenerate. I will try another trick:

1
N

PN
i=1

1

h̃2
N2

K̃2

0
@

(
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

1
AÎ1(Xi,Zi)=

1

Nh̃2
N2

PN
i=1 K̃2

0
@

(
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

1
AI1(Xi,Zi)+

1

Nh̃2
N2

PN
i=1 K̃2

0
@

(
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

1
A

×[σ̂(Xi,Zi)]
−1J̃−2

�
fX,Z (Xi,Zi)−q01

σ̂(Xi,Zi)

�[
f̂(Xi,Zi)−fX,Z(Xi,Zi)

]
1{f̂(Xi,Zi)>f(Xi,Zi)}

+ 1

Nh̃2
N2

PN
i=1 K̃2

0
@

(
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

1
A[σ̂(Xi,Zi)]

−1J̃+
2

�
fX,Z (Xi,Zi)−q01

σ̂(Xi,Zi)

�[
f̂(Xi,Zi)−fX,Z(Xi,Zi)

]

×1{f̂(Xi,Zi)≤f(Xi,Zi)}

My goal is to show that each of the last two terms is uniformly op(1). Let’s focus on the first of
those two. That term equals

PN
i=1

PN
j=1

1

N2h̃2
N2

h̃d
N1

K̃2

0
@

(
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

1
A[σ̂(Xi,Zi)]

−1J̃−2

�
fX,Z (Xi,Zi)−q01

σ̂(Xi,Zi)

�
1{f̂(Xi,Zi)>f(Xi,Zi)}

×
�
K̃1

�
(Xj,Zj)−(Xi,Zi)

h̃N1

�
−E

�
K̃1

�
(Xj,Zj)−(Xi,Zi)

h̃N1

�
|Xi,Zi

��
(14)

30We assume K̃2 ≥ 0.
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+
PN

i=1

PN
j=1

1

N2h̃2
N2

h̃d
N1

K̃2

0
@

(
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

1
A[σ̂(Xi,Zi)]

−1J̃−2

�
fX,Z (Xi,Zi)−q01

σ̂(Xi,Zi)

�
1{f̂(Xi,Zi)>f(Xi,Zi)}

×
�
E

�
K̃1

�
(Xj,Zj)−(Xi,Zi)

h̃N1

�
|Xi,Zi

�
−fX,Z(Xi,Zi)

�
(15)

Using the equicontinuity lemma we will show that (14) is op(1). For this purpose, for g ∈ H1,
define σ̃(Xi, Zi) = |g(Xi, Zi)− fX,Z(Xi, Zi)|, L̃i = 1{g(Xi, Zi) > fX,Z(Xi, Zi)}. Then

PN
i=1

PN
j=1

1

N2h̃2
N2

h̃d
N1

K̃2

0
@

(
h1(Xi,P (Zi)),P (Zi)

)
−(h0(x,P (z)),P (z))

h̃N2

1
A[σ̃(Xi,Zi)]

−1J̃−2

�
fX,Z (Xi,Zi)−q01

σ̃(Xi,Zi)

�
L̃i

×
�
K̃1

�
(Xj,Zj)−(Xi,Zi)

h̃N1

�
−E

�
K̃1

�
(Xj,Zj)−(Xi,Zi)

h̃N1

�
|Xi,Zi

�
−fX,Z(Xi,Zi)

�

is a degenerate U-process of order one which satisfies the conditions of the equicontinuity lemma.
Finally, (15) is op(h̃N1) by the smoothness of fX,Z . On the other hand, by using the same tricks,
we can also show that the symmetric term (i.e. the term involving J̃+) is also uniformly op(1).

As a result, f̂h1,P (h0(x, P (z)), P (z)) converges in probability uniformly to

f̃h1,P (h0(x, P (z)), P (z)) =
1

Nh̃2
N2

N∑
i=1

K̃2

((
h1(Xi, P (Zi)), P (Zi)

)− (h0(x, P (z)), P (z))

h̃N2

)
I1(Xi, Zi)

Given our assumptions on K̃2 we can use a strong law of large numbers to show that this converges
to

E

[
1

h̃2
N2

K̃2

((
h1(Xi, P (Zi)), P (Zi)

)− (h0(x, P (z)), P (z))

h̃N2

)
1(A1)

]

Now the set A1 is closed, but we can find a sequence of open sets that are all contained in A1.
Moreover the limit of this sequence of open sets will be A1. Using change of variables theorem by
breaking the set A1 into disjoint regions where P and h1 have non-zero derivatives, if necessary,
and then using Silverman’s theorem we have the desired result.
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